Do you want to publish a course? Click here

Micromagnetic study of flux-closure states in Fe dots using quantitative Lorentz Microscopy

118   0   0.0 ( 0 )
 Added by Aurelien Masseboeuf
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A micromagnetic study of epitaxial micron-sized iron dots is reported through the analysis of Fresnel contrast in Lorentz Microscopy. Their use is reviewed and developed through analysis of various magnetic structures in such dots. Simple Landau configuration is used to investigate various aspects of asymmetric Bloch domain walls. The experimental width of such a complex wall is first derived and its value is discussed with the help of micromagnetic simulations. Combination of these two approaches enables us to define what is really extracted when estimating asymmetric wall width in Lorentz Microscopy. Moreover, quantitative data on the magnetization inside the dot is retrieved using phase retrieval as well as new informations on the degrees of freedom of such walls. Finally, it is shown how the existence and the propagation of a surface vortex can be characterized and monitored. This demonstrates the ability to reach a magnetic sensitivity a priori hidden in Fresnel contrast, based on an original image treatment and backed-up by the evaluation of contrasts obtained from micromagnetic simulations.



rate research

Read More

We investigated with XMCD-PEEM magnetic imaging the magnetization reversal processes of Neel caps inside Bloch walls in self-assembled, micron-sized Fe(110) dots with flux-closure magnetic state. In most cases the magnetic-dependent processes are symmetric in field, as expected. However, some dots show pronounced asymmetric behaviors. Micromagnetic simulations suggest that the geometrical features (and their asymmetry) of the dots strongly affect the switching mechanism of the Neel caps.
Here we describe the development of the MALTS software which is a generalised tool that simulates Lorentz Transmission Electron Microscopy (LTEM) contrast of thin magnetic nanostructures. Complex magnetic nanostructures typically have multiple stable domain structures. MALTS works in conjunction with the open access micromagnetic software Object Oriented Micromagnetic Framework or MuMax. Magnetically stable trial magnetisation states of the object of interest are input into MALTS and simulated LTEM images are output. MALTS computes the magnetic and electric phases accrued by the transmitted electrons via the Aharonov-Bohm expressions. Transfer and envelope functions are used to simulate the progression of the electron wave through the microscope lenses. The final contrast image due to these effects is determined by Fourier Optics. Similar approaches have been used previously for simulations of specific cases of LTEM contrast. The novelty here is the integration with micromagnetic codes via a simple user interface enabling the computation of the contrast from any structure. The output from MALTS is in good agreement with both experimental data and published LTEM simulations. A widely-available generalized code for the analysis of Lorentz contrast addresses is a much needed step towards the use of LTEM as a standardized laboratory technique.
Off-axis electron holography was used to observe and quantify the magnetic microstructure of a perpendicular magnetic anisotropic (PMA) recording media. Thin foils of PMA materials exhibit an interesting up and down domain configuration. These domains are found to be very stable and were observed at the same time with their stray field, closing magnetic flux in the vacuum. The magnetic moment can thus be determined locally in a volume as small as few tens of cubic nanometers.
We have investigated three-dimensional magnetization structures in numerous mesoscopic Fe/Mo(110) islands by means of x-ray magnetic circular dichroism combined with photoemission electron microscopy (XMCD-PEEM). The particles are epitaxial islands with an elongated hexagonal shape with length of up to 2.5 micrometer and thickness of up to 250 nm. The XMCD-PEEM studies reveal asymmetric magnetization distributions at the surface of these particles. Micromagnetic simulations are in excellent agreement with the observed magnetic structures and provide information on the internal structure of the magnetization which is not accessible in the experiment. It is shown that the magnetization is influenced mostly by the particle size and thickness rather than by the details of its shape. Hence, these hexagonal samples can be regarded as model systems for the study of the magnetization in thick, mesoscopic ferromagnets.
Imaging of flux vortices in high quality MgB$_2$ single crystals has been successfully performed in a commercial Field Emission Gun-based Transmission Electron Microscope. In Cryo-Lorentz Microscopy, the sample quality and the vortex lattice can be monitored simultaneously, allowing one to relate microscopically the surface quality and the vortex dynamics. Such a vortex motion ultimately determines the flow resistivity, $rho_{f}$, the knowledge of which is indispensable for practical applications such as superconducting magnets or wires for Magnetic Resonance Imaging. The observed patterns have been analyzed and compared with other studies by Cryo-Lorentz Microscopy or Bitter decoration. We find that the vortex lattice arrangement depends strongly on the surface quality obtained during the specimen preparation, and tends to form an hexagonal Abrikosov lattice at a relatively low magnetic field. Stripes or gossamer-like patterns, recently suggested as potential signatures of an unconventional behavior of MgB$_2$, were not observed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا