Do you want to publish a course? Click here

Rydberg excitation of trapped cold ions: A detailed case study

133   0   0.0 ( 0 )
 Added by Igor Lesanovsky
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.



rate research

Read More

185 - T. Secker , N. Ewald , J. Joger 2016
We theoretically study trapped ions that are immersed in an ultracold gas of Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden transition, the adiabatic atom-ion potential can be made repulsive. We study the energy exchange between the atoms and a single trapped ion and find that Langevin collisions are inhibited in the ultracold regime for these repulsive interactions. Therefore, the proposed system avoids recently observed ion heating in hybrid atom-ion systems caused by coupling to the ions radio frequency trapping field and retains ultracold temperatures even in the presence of excess micromotion.
We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.
Recent progresses on quantum control of cold atoms and trapped ions in both the scientific and technological aspects greatly advance the applications in precision measurement. Thanks to the exceptional controllability and versatility of these massive quantum systems, unprecedented sensitivity has been achieved in clocks, magnetometers and interferometers based on cold atoms and ions. Besides, these systems also feature many characteristics that can be employed to facilitate the applications in different scenarios. In this review, we briefly introduce the principles of optical clocks, cold atom magnetometers and atom interferometers used for precision measurement of time, magnetic field, and inertial forces. The main content is then devoted to summarize some recent experimental and theoretical progresses in these three applications, with special attention being paid to the new designs and possibilities towards better performance. The purpose of this review is by no means to give a complete overview of all important works in this fast developing field, but to draw a rough sketch about the frontiers and show the fascinating future lying ahead.
Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their investigation remains challenging and requires ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections and to simulate their ensuing dynamics on larger length and time scales of the order of nanometers and microseconds, respectively; all this in a highly controllable system. Here, the shape of the potential energy surfaces and the position of the conical intersection can be tuned thanks to the interplay between the high polarizability and the strong dipolar exchange interactions of Rydberg ions. We study how the presence of a conical intersection affects both the nuclear and electronic dynamics demonstrating, in particular, how it results in the inhibition of the nuclear motion. These effects can be monitored in real-time via a direct spectroscopic measurement of the electronic populations in a state-of-the-art experimental setup.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا