Do you want to publish a course? Click here

WASP-35b, WASP-48b and WASP-51b: Two new planets and an independent discovery of HAT-P-30b

415   0   0.0 ( 0 )
 Added by Becky Enoch
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R_sun in the Northern hemisphere, and the independent discovery of HAT-P-30b / WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, FTS and TRAPPIST photometry, with CORALIE, SOPHIE and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 +/- 0.06 M_J and radius of 1.32 +/- 0.03 R_J, and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 +/- 0.09 M_J, radius of 1.67 +/- 0.08 R_J and orbits in 2.14 days, while WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 +/- 0.05 M_J and radius of 1.42 +/- 0.04 R_J, agreeing with values of 0.71 +/- 0.03 M_J and 1.34 +/- 0.07 R_J reported for HAT-P-30b.



rate research

Read More

153 - Ch. Helling , D. Lewis , D. Samra 2021
Ultra-hot Jupiters are the hottest exoplanets discovered so far. Observations begin to provide insight into the composition of their extended atmospheres and their chemical day/night asymmetries. Both are strongly affected by cloud formation. We explore trends in cloud properties for a sample of five giant gas planets: WASP-43b, WASP-18b, HAT-P-7b, WASP-103b, and WASP-121b. This provides a reference frame for cloud properties for the JWST targets WASP-43b and WASP-121b. We further explore chemically inert tracers to observe geometrical asymmetries, and if the location of inner boundary of a 3D GCM matters for the clouds that form. The large day/night temperature differences of ultra-hot Jupiters cause large chemical asymmetries: cloud-free days but cloudy nights, atomic vs. molecular gases and respectively different mean molecular weights, deep thermal ionospheres vs. low-ionised atmospheres, undepleted vs enhanced C/O. WASP-18b, as the heaviest planet in the sample, has the lowest global C/O. The global climate may be considered as similar amongst ultra-hot Jupiters, but different to that of hot gas giants. The local weather, however, is individual for each planet since the local thermodynamic conditions, and hence the local cloud and gas properties, differ. The morning and the evening terminator of ultra-hot Jupiters will carry signatures of their strong chemical asymmetry such that ingress/egress asymmetries can be expected. An increased C/O ratio is a clear sign of cloud formation, making cloud modelling a necessity when utilizing C/O (or other mineral ratios) as tracer for planet formation. The changing geometrical extension of the atmosphere from the day to the nightside may be probed through chemically inert species like helium. Ultra-hot Jupiters are likely to develop deep atmospheric ionospheres which may impact the atmosphere dynamics through MHD processes.
We present the discovery of four new transiting hot jupiters, detected mainly from SuperWASP-North and SOPHIE observations. These new planets, WASP-52b, WASP-58b, WASP-59b, and WASP-60b, have orbital periods ranging from 1.7 to 7.9 days, masses between 0.46 and 0.94 M_Jup, and radii between 0.73 and 1.49 R_Jup. Their G1 to K5 dwarf host stars have V magnitudes in the range 11.7-13.0. The depths of the transits are between 0.6 and 2.7%, depending on the target. With their large radii, WASP-52b and 58b are new cases of low-density, inflated planets, whereas WASP-59b is likely to have a large, dense core. WASP-60 shows shallow transits. In the case of WASP-52 we also detected the Rossiter-McLaughlin anomaly via time-resolved spectroscopy of a transit. We measured the sky-projected obliquity lambda = 24 (+17/-9) degrees, indicating that WASP-52b orbits in the same direction as its host star is rotating and that this prograde orbit is slightly misaligned with the stellar equator. These four new planetary systems increase our statistics on hot jupiters, and provide new targets for follow-up studies.
We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.
From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 Mjup planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H] = 0.14 +/- 0.11). The planets mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3 to 4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star.
We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric lightcurves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 days, which has $R_p = 1.461 pm 0.077 R_{rm J}$ and $M_p = 0.805 pm 0.068 M_{rm J}$. WASP-93b orbits its F4 host star every 2.73 days and has $R_p = 1.597 pm 0.077 R_{rm J}$ and $M_p = 1.47 pm 0.029 M_{rm J}$. WASP-118b also has a hot host star (F6) and is moderately inflated, where $R_p = 1.440 pm 0.036 R_{rm J}$ and $M_p = 0.513 pm 0.041 M_{rm J}$ and the planet has an orbital period of 4.05 days. They are bright targets (V = 13.18, 10.97 and 11.07 respectively) ideal for further characterisation work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. WASP-93b is expected to be tidally migrating outwards, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا