No Arabic abstract
Monte Carlo (MC) simulations are the standard tool for describing jet-like multi-particle final states. To apply them to the simulation of medium-modified jets in heavy ion collisions, a probabilistic implementation of medium-induced quantum interference effects is needed. Here, we analyze in detail how the quantum interference effects included in the BDMPS-Z formalism of medium-induced gluon radiation can be implemented in a quantitatively controlled, local probabilistic parton cascade. The resulting MC algorithm is formulated in terms of elastic and inelastic mean free paths, and it is by construction insensitive to the IR and UV divergences of the total elastic and inelastic cross sections that serve as its basic building blocks in the incoherent limit. Interference effects are implemented by reweighting gluon production histories as a function of the number of scattering centers that act within the gluon formation time. Unlike existing implementations based on gluon formation time, we find generic arguments for why a quantitative implementation of quantum interference cannot amount to a mere dead-time requirement for subsequent gluon production. We validate the proposed MC algorithm by comparing MC simulations with parametric dependencies and analytical results of the BDMPS-Z formalism. In particular, we show that the MC algorithm interpolates correctly between analytically known limiting cases for totally coherent and incoherent gluon production, and that it accounts quantitatively for the medium-induced gluon energy distribution and the resulting average parton energy loss. We also verify that the MC algorithm implements the transverse momentum broadening of the BDMPS-Z formalism. We finally discuss why the proposed MC algorithm provides a suitable starting point for going beyond the approximations of the BDMPS-Z formalism.
QCD jets, produced copiously in heavy-ion collisions at LHC and also at RHIC, serve as probes of the dynamics of the quark-gluon plasma (QGP). Jet fragmentation in the medium is interesting in its own right and, in order to extract pertinent information about the QGP, it has to be well understood. We present a brief overview of the physics involved and argue that jet substructure observables provide new opportunities for understanding the nature of the modifications.
It is widely accepted that a phenomenologically viable theory of jet quenching for heavy ion collisions requires the understanding of medium-induced parton energy loss beyond the limit of eikonal kinematics formulated by Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z). Here, we supplement a recently developed exact Monte Carlo implementation of the BDMPS-Z formalism with elementary physical requirements including exact energy-momentum conservation, a refined formulation of jet-medium interactions and a treatment of all parton branchings on the same footing. We document the changes induced by these physical requirements and we describe their kinematic origin.
PHANTOM is a tree level Monte Carlo for six parton final states at proton--proton, proton--antiproton and electron--positron collider at O(alpha_ew^6) and O(alpha_ew^4*alpha_s^2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contribution as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the last Les Houches Accord protocol. It can be used to analyze the physics of boson boson scattering, Higgs boson production in boson boson fusion, t-tbar and three boson production.
Extending the use of Monte Carlo (MC) event generators to jets in nuclear collisions requires a probabilistic implementation of the non-abelian LPM effect. We demonstrate that a local, probabilistic MC implementation based on the concept of formation times can account fully for the LPM-effect. The main features of the analytically known eikonal and collinear approximation can be reproduced, but we show how going beyond this approximation can lead to qualitatively different results.
VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order in the strong coupling constant. VBFNLO includes Higgs and vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading-order one-loop level with the full top- and bottom-quark mass dependence in a generic two-Higgs-doublet model. A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order.