Do you want to publish a course? Click here

PHANTOM: a Monte Carlo event generator for six parton final states at high energy colliders

261   0   0.0 ( 0 )
 Added by Ezio Maina
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

PHANTOM is a tree level Monte Carlo for six parton final states at proton--proton, proton--antiproton and electron--positron collider at O(alpha_ew^6) and O(alpha_ew^4*alpha_s^2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contribution as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the last Les Houches Accord protocol. It can be used to analyze the physics of boson boson scattering, Higgs boson production in boson boson fusion, t-tbar and three boson production.



rate research

Read More

The Monte Carlo program {tt WWGENPV}, designed for computing distributions and generating events for four-fermion production in $e^+ e^- $ collisions, is described. The new version, 2.0, includes the full set of the electroweak (EW) tree-level matrix elements for double- and single-$W$ production, initial- and final-state photonic radiation including $p_T / p_L$ effects in the Structure Function formalism, all the relevant non-QED corrections (Coulomb correction, naive QCD, leading EW corrections). An hadronisation interface to {tt JETSET} is also provided. The program can be used in a three-fold way: as a Monte Carlo integrator for weighted events, providing predictions for several observables relevant for $W$ physics; as an adaptive integrator, giving predictions for cross sections, energy and invariant mass losses with high numerical precision; as an event generator for unweighted events, both at partonic and hadronic level. In all the branches, the code can provide accurate and fast results.
We review the main software and computing challenges for the Monte Carlo physics event generators used by the LHC experiments, in view of the High-Luminosity LHC (HL-LHC) physics programme. This paper has been prepared by the HEP Software Foundation (HSF) Physics Event Generator Working Group as an input to the LHCC review of HL-LHC computing, which has started in May 2020.
115 - Sadaharu Uehara 2013
A description and the use of an event-generator code for two-photon processes at e+e- colliders, TREPS, are presented. This program uses an equivalent photon approximation in which the virtuality of photons is taken into account. It is applicable to various processes by specifying a combination of final-state particles and the angular distributions among them. A comparison of the results with those from other programs is also given.
The CASCADE3 Monte Carlo event generator based on Transverse Momentum Dependent (TMD) parton densities is described. Hard processes which are generated in collinear factorization with LO multileg or NLO parton level generators are extended by adding transverse momenta to the initial partons according to TMD densities and applying dedicated TMD parton showers and hadronization. Processes with off-shell kinematics within $k_t$-factorization, either internally implemented or from external packages via LHE files, can be processed for parton showering and hadronization. The initial state parton shower is tied to the TMD parton distribution, with all parameters fixed by the TMD distribution.
Monte Carlo event generators (MCEGs) are the indispensable workhorses of particle physics, bridging the gap between theoretical ideas and first-principles calculations on the one hand, and the complex detector signatures and data of the experimental community on the other hand. All collider physics experiments are dependent on simulated events by MCEG codes such as Herwig, Pythia, Sherpa, POWHEG, and MG5_aMC@NLO to design and tune their detectors and analysis strategies. The development of MCEGs is overwhelmingly driven by a vibrant community of academics at European Universities, who also train the next generations of particle phenomenologists. The new challenges posed by possible future collider-based experiments and the fact that the first analyses at Run II of the LHC are now frequently limited by theory uncertainties urge the community to invest into further theoretical and technical improvements of these essential tools. In this short contribution to the European Strategy Update, we briefly review the state of the art, and the further developments that will be needed to meet the challenges of the next generation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا