Do you want to publish a course? Click here

Rotational-state-specific guiding of large molecules

302   0   0.0 ( 0 )
 Added by Stephan Putzke
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A beam of polar molecules can be focused and transported through an ac electric quadrupole guide. At a given ac frequency, the transmission of the guide depends on the mass-to-dipole-moment (m/textmu) ratio of the molecular quantum state. Here we present a detailed characterization of the m/textmu selector, using a pulsed beam of benzonitrile (C$_6$H$_5$CN) molecules in combination with rotational quantum state resolved detection. The arrival time distribution as well as the transverse velocity distribution of the molecules exiting the selector are measured as a function of ac frequency. The textmu/$Delta$textmu resolution of the selector can be controlled by the applied ac waveforms and a value of up to 20 can be obtained with the present setup. This is sufficient to exclusively transmit molecules in the absolute ground state of benzonitrile, or rather in quantum states that have the same m/textmu value as the ground state. The operation characteristics of the m/textmu selector are in quantitative agreement with the outcome of trajectory simulations.



rate research

Read More

We study frustrated double ionization in a strongly-driven heteronuclear molecule HeH$^{+}$ and compare with H$_2$. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH$^{+}$. We find that this distribution has more than one peak for strongly-driven HeH$^{+}$, a feature we do not find to be present for strongly-driven H$_{2}$. Moreover, we compute the probability distribution of the n quantum number of frustrated double ionization. We find that this distribution has several peaks for strongly-driven HeH$^{+}$, while the respective distribution has one main peak and a shoulder at lower n quantum numbers for strongly-driven H$_{2}$. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.
Alignment of OCS, CS$_2$ and I$_2$ molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a non-resonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS$_2$ and I$_2$, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schr{o}dinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.
Chirality is ubiquitous in nature and fundamental in science, from particle physics to metamaterials.The most established technique of chiral discrimination - photoabsorption circular dichroism - relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. We propose and demonstrate a new, orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexitation circular dichroism. It does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation without the aid of further chiral interactions using linearly polarized laser pulses. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.
The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their adiabatic-entry orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and adiabatic-entry ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.
In the present work, we investigate the ionization of molecules of biological interest by the impact of multicharged ions in the intermediate to high energy range. We performed full non-perturbative distorted-wave calculations (CDW) for thirty-six collisional systems composed by six atomic targets: H, C, N, O, F, and S -which are the constituents of most of the DNA and biological molecules- and six charged projectiles (antiprotons, H, He, B, C, and O). On account of the radiation damage caused by secondary electrons, we inspect the energy and angular distributions of the emitted electrons from the atomic targets. We examine seventeen molecules: DNA and RNA bases, DNA backbone, pyrimidines, tetrahydrofuran (THF), and C n H n compounds. We show that the simple stoichiometric model (SSM), which approximates the molecular ionization cross sections as a linear combination of the atomic ones, gives reasonably good results for complex molecules. We also inspect the extensively used Toburen scaling of the total ionization cross sections of molecules with the number of weakly bound electrons. Based on the atomic CDW results, we propose new active electron numbers, which leads to a better universal scaling for all the targets and ions studied here in the intermediate to the high energy region. The new scaling describes well the available experimental data for proton impact, including small molecules. We perform full molecular calculations for five nucleobases and test a modified stoichiometric formula based on the Mulliken charge of the composite atoms. The difference introduced by the new stoichiometric formula is less than 3%, which indicates the reliability of the SSM to deal with this type of molecules. The results of the extensive ion-target examination included in the present study allow us to assert that the SSM and the CDW-based scaling will be useful tools in this area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا