Do you want to publish a course? Click here

The structure and dynamics of molecular gas in planet-forming zones: A CRIRES spectro-astrometric survey

121   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a spectro-astrometric survey of molecular gas in the inner regions of 16 protoplanetary disks using CRIRES, the high resolution infrared imaging spectrometer on the Very Large Telescope. Spectro-astrometry with CRIRES measures the spatial extent of line emission to sub-milliarcsecond precision, or <0.2 AU at the distance of the observed targets. The sample consists of gas-rich disks surrounding stars with spectral types ranging from K to A. The properties of the spectro-astrometric signals divide the sources into two distinct phenomenological classes: one that shows clear Keplerian astrometric spectra, and one in which the astrometric signatures are dominated by gas with strong non-Keplerian (radial) motions. Similarly to the near-infrared continuum emission, as determined by interferometry, we find that the size of the CO line emitting region in the Keplerian sources obeys a size-luminosity relation as $R_CO L_*^0.5. The non-Keplerian spectro-astrometric signatures are likely indicative of the presence of wide-angle disk winds. The central feature of the winds is a strong sub-Keplerian velocity field due to conservation of angular momentum as the wind pressure drives the gas outwards. We construct a parametrized 2-dimensional disk+wind model that reproduces the observed characteristics the observed CO spectra and astrometry. The modeled winds indicate mass-loss rates of >10^-10 to 10^-8 Msol/yr. We suggest a unifying model in which all disks have slow molecular winds, but where the magnitude of the mass-loss rate determines the degree to which the mid-infrared molecular lines are dominated by the wind relative to the Keplerian disk surface.



rate research

Read More

We present detections of numerous 10-20 micron H2O emission lines from two protoplanetary disks around the T Tauri stars AS 205A and DR Tau, obtained using the InfraRed Spectrograph on the Spitzer Space Telescope. Follow-up 3-5 micron Keck-NIRSPEC data confirm the presence of abundant water and spectrally resolve the lines. We also detect the P4.5 (2.934 micron) and P9.5 (3.179 micron) doublets of OH and 12CO/13CO v=1-0 emission in both sources. Line shapes and LTE models suggest that the emission from all three molecules originates between ~0.5 and 5 AU, and so will provide a new window for understanding the chemical environment during terrestrial planet formation. LTE models also imply significant columns of H2O and OH in the inner disk atmospheres, suggesting physical transport of volatile ices either vertically or radially; while the significant radial extent of the emission stresses the importance of a more complete understanding of non-thermal excitation processes.
Determining habitable zones in binary star systems can be a challenging task due to the combination of perturbed planetary orbits and varying stellar irradiation conditions. The concept of dynamically informed habitable zones allows us, nevertheless, to make predictions on where to look for habitable worlds in such complex environments. Dynamically informed habitable zones have been used in the past to investigate the habitability of circumstellar planets in binary systems and Earth-like analogs in systems with giant planets. Here, we extend the concept to potentially habitable worlds on circumbinary orbits. We show that habitable zone borders can be found analytically even when another giant planet is present in the system. By applying this methodology to Kepler-16, Kepler-34, Kepler-35, Kepler-38, Kepler-64, Kepler-413, Kepler-453, Kepler-1647 and Kepler-1661 we demonstrate that the presence of the known giant planets in the majority of those systems does not preclude the existence of potentially habitable worlds. Among the investigated systems Kepler-35, Kepler-38 and Kepler-64 currently seem to offer the most benign environment. In contrast, Kepler-16 and Kepler-1647 are unlikely to host habitable worlds.
We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (LIR/L*) using the single dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using LIR/L* values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have LIR/L* > 0.01 typical of T-Tauri or Herbig AeBe stars, and the rest (21 systems) have LIR/L* < 0.01 typical of debris disks. We detect CO(3-2) emission from 20 systems, and 18 (90%) of these have LIR/L* > 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discovered gas-rich disks, we present radiative transfer models that simultaneously reproduce their spectral energy distributions and the 12CO(3-2) line profiles. For both of these systems, the data are fit well by geometrically flat disks, placing them in the small class of non-flaring disks with significant molecular gas reservoirs.
Aims. We aim to detect molecules in the atmosphere of the young forming companion PDS70 b by searching for atmospheric absorption features typical of substellar objects. Methods. We obtained medium-resolution (R$approx$5075) spectra of the PDS70 planetary system with the SINFONI integral field spectrograph at the Very Large Telescope. We applied molecular mapping, based on cross-correlation with synthetic spectra, to identify signatures of molecular species in the atmosphere of the planet. Results. Although the planet emission is clearly detected when resampling the data to lower resolution, no molecular species could be identified with the cross-correlation technique. We estimated upper limits on the abundances of H$_2$O, CO and CH$_4$ ($log(X_mathrm{mol}) < -4.0$, $-4.1$ and $-4.9$, respectively) assuming a clear atmosphere, and we explored the impact of clouds, which increase the upper limits by a factor up to 0.7 dex. Assuming that the observations directly probe the planets atmosphere, we found a lack of molecular species compared to other directly imaged companions or field objects. Under the assumption that the planet atmosphere presents similar characteristics to other directly imaged planets, we conclude that a dusty environment surrounds the planet, effectively obscuring any feature generated in its atmosphere. We quantify the extinction necessary to impede the detection ($A_Vapprox16-17$ mag), pointing to the possibility of higher optical thickness than previously estimated from other studies. Finally, the non-detection of molecular species conflicts with atmospheric models previously proposed to describe the forming planet. Conclusions. To unveil how giant planets form, a comprehensive approach that includes constraints from multiple techniques needs to be undertaken. Molecular mapping emerges as an alternative to more classical techniques like SED fitting.
We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z=0.05 to z=0.5, with stellar masses of (4-30)x10^10 M_Sun and star formation rates of 4-100 M_Sun yr^-1. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(1-0) and CO(3-2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 pm 0.54 Gyr for normal galaxies and 0.06 pm 0.04 Gyr for starburst galaxies. We calculate an average molecular gas fraction of 7-20% at the intermediate redshifts probed by the EGNoG survey. By expressing the molecular gas fraction in terms of the specific star formation rate and molecular gas depletion time (using typical values), we also calculate the expected evolution of the molecular gas fraction with redshift. The predicted behavior agrees well with the significant evolution observed from z~2.5 to today.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا