Do you want to publish a course? Click here

Circumbinary habitable zones in the presence of a giant planet

77   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Determining habitable zones in binary star systems can be a challenging task due to the combination of perturbed planetary orbits and varying stellar irradiation conditions. The concept of dynamically informed habitable zones allows us, nevertheless, to make predictions on where to look for habitable worlds in such complex environments. Dynamically informed habitable zones have been used in the past to investigate the habitability of circumstellar planets in binary systems and Earth-like analogs in systems with giant planets. Here, we extend the concept to potentially habitable worlds on circumbinary orbits. We show that habitable zone borders can be found analytically even when another giant planet is present in the system. By applying this methodology to Kepler-16, Kepler-34, Kepler-35, Kepler-38, Kepler-64, Kepler-413, Kepler-453, Kepler-1647 and Kepler-1661 we demonstrate that the presence of the known giant planets in the majority of those systems does not preclude the existence of potentially habitable worlds. Among the investigated systems Kepler-35, Kepler-38 and Kepler-64 currently seem to offer the most benign environment. In contrast, Kepler-16 and Kepler-1647 are unlikely to host habitable worlds.

rate research

Read More

With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find potentially habitable planets, one needs to prioritise the ever-growing list of candidates. We aim to determine which of the known planetary systems are dynamically capable of hosting rocky planets in their habitable zones, with the goal of helping to focus future planet search programs. We perform an extensive suite of numerical simulations to identify regions in the habitable zones of single Jovian planet systems where Earth mass planets could maintain stable orbits, specifically focusing on the systems in the Catalog of Earth-like Exoplanet Survey Targets (CELESTA). We find that small, Earth-mass planets can maintain stable orbits in cases where the habitable zone is largely, or partially, unperturbed by a nearby Jovian, and that mutual gravitational interactions and resonant mechanisms are capable of producing stable orbits even in habitable zones that are significantly or completely disrupted by a Jovian. Our results yield a list of 13 single Jovian planet systems in CELESTA that are not only capable of supporting an Earth-mass planet on stable orbits in their habitable zone, but for which we are also able to constrain the orbits of the Earth-mass planet such that the induced radial velocity signals would be detectable with next generation instruments.
In this work is investigated the possibility of close-binary star systems having Earth-size planets within their habitable zones. First, we selected all known close-binary systems with confirmed planets (totaling 22 systems) to calculate the boundaries of their respective habitable zones (HZ). However, only eight systems had all the data necessary for the computation of the HZ. Then, we numerically explored the stability within the habitable zones for each one of the eight systems using test particles. From the results, we selected five systems that have stable regions inside the habitable zones (HZ), namely Kepler-34, 35, 38, 413 and 453. For these five cases of systems with stable regions in the HZ, we perform a series of numerical simulations for planet formation considering disks composed of planetary embryos and planetesimals, with two distinct density profiles, in addition to the stars and host planets of each system. We found that in the case of Kepler-34 and 453 systems no Earth-size planet is formed within the habitable zones. Although planets with Earth-like masses were formed in the Kepler-453, but they were outside the HZ. In contrast, for Kepler-35 and 38 systems, the results showed that potentially habitable planets are formed in all simulations. In the case of the Kepler-413 system, in just one simulation a terrestrial planet was formed within the habitable zone.
Several concepts have been brought forward to determine where terrestrial planets are likely to remain habitable in multi-stellar environments. Isophote-based habitable zones, for instance, rely on insolation geometry to predict habitability, whereas radiative habitable zones take the orbital motion of a potentially habitable planet into account. Dynamically informed habitable zones include gravitational perturbations on planetary orbits, and full scale, self consistent simulations promise detailed insights into the evolution of select terrestrial worlds. All of the above approaches agree that stellar multiplicity does not preclude habitability. Predictions on where to look for habitable worlds in such environments can differ between concepts. The aim of this article is to provide an overview of current approaches and present simple analytic estimates for the various types of habitable zones in binary star systems.
Observations of exoplanets and protoplanetary disks show that binary stellar systems can host planets in stable orbits. Given the high binary fraction among stars, the contribution of binary systems to Galactic habitability should be quantified. Therefore, we have designed a suite of Monte Carlo experiments aimed at generating large (up to $10^6$) samples of binary systems. For each system randomly extracted we calculate the intersection between the radiative habitable zones and the regions of dynamical stability using published empirical formulations that account for the dynamical and radiative parameters of both stars of the system. We also consider constraints on planetary formation in binary systems. We find that the habitability properties of circumstellar and circumbinary regions are quite different and complementary with respect to the binary system parameters. Circumbinary HZs are, generally, rare ($simeq 4%$) in the global population of binary systems, even if they are common for stellar separations $lesssim 0.2$ AU. Conversely, circumstellar HZs are frequent ($ge 80%$) in the global population, but are rare for stellar separations $lesssim 1$ AU. These results are robust against variations of poorly constrained binary systems parameters. We derive ranges of stellar separations and stellar masses for which HZs in binary systems can be wider than the HZs around single stars; the widening can be particularly strong (up to one order of magnitude) for circumstellar regions around M-type secondary stars. The comparison of our statistical predictions with observational surveys shows the impact of selection effects on the habitability properties of detected exoplanets in binary systems.
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model we use a cool Y dwarf atmosphere, such as $mathrm{WISE~J}085510.83-0714442.5$ whose $4.5-5.2$ micron spectrum shows absorption features consistent with water vapour and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach we infer that there are of order $10^9$ cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within ten parsecs from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا