Do you want to publish a course? Click here

High-Spatial-Resolution Monitoring of Strong Magnetic Field using Rb vapor Nanometric-Thin Cell

109   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have implemented the so-called $lambda$-Zeeman technique (LZT) to investigate individual hyperfine transitions between Zeeman sublevels of the Rb atoms in a strong external magnetic field $B$ in the range of $2500 - 5000$ G (recently it was established that LZT is very convenient for the range of $10 - 2500$ G). Atoms are confined in a nanometric thin cell (NTC) with the thickness $L = lambda$, where $lambda$ is the resonant wavelength 794 nm for Rb $D_1$ line. Narrow velocity selective optical pumping (VSOP) resonances in the transmission spectrum of the NTC are split into several components in a magnetic field with the frequency positions and transition probabilities depending on the $B$-field. Possible applications are described, such as magnetometers with nanometric local spatial resolution and tunable atomic frequency references.



rate research

Read More

We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.
Magnetic field source localization and imaging happen at different scales. The sensing baseline ranges from meter scale such as magnetic anomaly detection, centimeter scale such as brain field imaging to nanometer scale such as the imaging of magnetic skyrmion and single cell. Here we show how atomic vapor cell can be used to realize a baseline of 109.6 {mu}m with a magnetic sensitivity of 10pT/sqrt(Hz)@0.6-100Hz and a dynamic range of 2062-4124nT.We use free induction decay (FID) scheme to suppress low-frequency noise and avoid scale factor variation for different domains due to light non-uniformity. The measurement domains are scanned by digital micro-mirror device (DMD). The currents of 22mA, 30mA, 38mA and 44mA are applied in the coils to generate different fields along the pumping axis which are measured respectively by fitting the FID signals of the probe light. The residual fields of every domain are obtained from the intercept of linearly-fitting of the measurement data corresponding to these four currents. The coil-generated fields are calculated by deducting the residual fields from the total fields. The results demonstrate that the hole of shield affects both the residual and the coil-generated field distribution. The potential impact of field distribution measurement with an outstanding comprehensive properties of spatial resolution, sensitivity and dynamic range is far-reaching. It could lead to capability of 3D magnetography for small stuffs and/or organs in millimeter or even smaller scale.
A comprehensive study of three-photon electromagnetically-induced transparency (EIT) and absorption (EIA) on the rubidium cascade $5S_{1/2} rightarrow 5P_{3/2}$ (laser wavelength 780~nm), $5P_{3/2} rightarrow 5D_{5/2}$ (776~nm), and $5D_{5/2}rightarrow 28F_{7/2}$ (1260~nm) is performed. The 780-nm probe and 776-nm dressing beams are counter-aligned through a Rb room-temperature vapor cell, and the 1260-nm coupler beam is co- or counter-aligned with the probe beam. Several cases of EIT and EIA, measured over a range of detunings of the 776-nm beam, are studied. The observed phenomena are modeled by numerically solving the Lindblad equation, and the results are interpreted in terms of the probe-beam absorption behavior of velocity- and detuning-dependent dressed states. To explore the utility of three-photon Rydberg EIA/EIT for microwave electric-field diagnostics, a sub-THz field generated by a signal source and a frequency quadrupler is applied to the Rb cell. The 100.633-GHz field resonantly drives the $28F_{7/2}leftrightarrow29D_{5/2}$ transition and causes Autler-Townes splittings in the Rydberg EIA/EIT spectra, which are measured and employed to characterize the performance of the microwave quadrupler.
We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.
We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique (PPOP) in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impact of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by $1/(2T_R)$, with $T_R$ the free-evolution time, for short values of $T_R$. The clock demonstrates a short-term fractional frequency stability at the level of $2.3 times 10^{-13}~tau^{-1/2}$ up to 100 seconds averaging time, mainly limited by the laser AM noise. Comparable performances are obtained in the conventional continuous (CW) regime, if use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of $T_R$. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا