Do you want to publish a course? Click here

Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

192   0   0.0 ( 0 )
 Added by Francesco Manni
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems, the transverse electric - transverse magnetic (TE-TM) polarization splitting featured by semiconductor microcavities allows for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The process implies the formation of topological entities, a pair of optical half-vortices, in the intracavity field.



rate research

Read More

A new physical mechanism to achieve spin-to-orbital angular momentum conversion based on the interaction of an intense circularly polarized (CP) laser beam with a plane foil is presented and studied for the first time. It has been verified by both simulation and theoretical analysis that vortex harmonics carrying orbital angular momentum (OAM) are generated after a relativistic CP laser beam, even a Gaussian beam, impinges normally on a plane foil. The generation of this vortex harmonics is attributed to the vortex oscillation of the plasma surface driven harmonically by the vortex longitudinal electric field of the CP beam. During the process of harmonic generation, the spin angular momenta of fundamental-frequency photons are converted to OAM of harmonic photon because of the conservation of total angular momentum. In addition, if an initially vortex beam or a spiral phase plate is used, the OAM of harmonic photon can be more tunable and controllable.
Light with nonzero orbital angular momentum (OAM) or twisted light is promising for quantum communication applications such as OAM-entangled photonic qubits. There exist photonic OAM to photonic spin angular momentum (SAM), as well as photonic SAM to electronic SAM interfaces but not any direct photonic OAM-electronic SAM (flying to stationary) media converter within a single device. Here, we propose a scheme which converts photonic OAM to electronic SAM and vice versa within a single nanophotonic device. We employed a photonic crystal nanocavity with an embedded quantum dot (QD) which confines an electron spin as a stationary qubit. Spin polarized emission from the QD drive the rotation of the nanocavity modes via the strong optical spin-orbit interaction. The rotating modes then radiate light with nonzero OAM, allowing this device to serve as a transmitter. As this can be a unitary process, the time-reversed case enables the device to function as a receiver. This scheme could be generalized to other systems of resonator and quantum emitters such as a microdisk and defects in diamond for example. Our scheme shows the potential for realizing an (ultra)compact electronic SAM-photonic OAM interface to accommodate OAM as an additional degree of freedom for quantum information purposes.
As one fundamental property of light, the orbital angular momentum (OAM) of photon has elicited widespread interest. Here, we theoretically demonstrate that the OAM conversion of light without any spin state can occur in homogeneous and isotropic medium when a specially tailored locally linearly polarized (STLLP) beam is strongly focused by a high numerical aperture (NA) objective lens. Through a high NA objective lens, the STLLP beams can generate identical twin foci with tunable distance between them controlled by input state of polarization. Such process admits partial OAM conversion from linear state to conjugate OAM states, giving rise to helical phases with opposite directions for each focus of the longitudinal component in the focal field.
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of OAM $ell$. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge $q$. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the OAM changes in value by $ell = pm2qhbar$ per photon. We experimentally demonstrate $ell$ values ranging from $pm 1$ to $pm 25$ with conversion efficiencies of $8.6pm0.4~%$. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations and nano-scale sensing.
Light beams carrying orbital angular momentum (OAM) have led to stunning applications in various fields from quantum information to microscopy. In this letter, we examine OAM from the recently discovered high-harmonic generation (HHG) in semiconductor crystals. HHG from solids could be a valuable approach for integrated high-flux short-wavelength coherent light sources. The solid state nature of the generation medium allows the possibility to tailor directly the radiation at the source of the emission and offers a substantial degree of freedom for spatial beam shaping. First, we verify the fundamental principle of the transfer and conservation of the OAM from the generation laser to the harmonics. Second, we create OAM beams by etching a spiral zone structure directly at the surface of a zinc oxide crystal. Such diffractive optics act on the generated harmonics and produces focused optical vortices with nanometer scale sizes that may have potential applications in nanoscale optical trapping and quantum manipulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا