Do you want to publish a course? Click here

Searches on star graphs and equivalent oracle problems

214   0   0.0 ( 0 )
 Added by Jaehak Lee
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine a search on a graph among a number of different kinds of objects (vertices), one of which we want to find. In a standard graph search, all of the vertices are the same, except for one, the marked vertex, and that is the one we wish to find. We examine the case in which the unmarked vertices can be of different types, so the background against which the search is done is not uniform. We find that the search can still be successful, but the probability of success is lower than in the uniform background case, and that probability decreases with the number of types of unmarked vertices. We also show how the graph searches can be rephrased as equivalent oracle problems.



rate research

Read More

251 - Mark Adcock , Peter Hoyer , 2008
We establish a framework for oracle identification problems in the continuous variable setting, where the stated problem necessarily is the same as in the discrete variable case, and continuous variables are manifested through a continuous representation in an infinite-dimensional Hilbert space. We apply this formalism to the Deutsch-Jozsa problem and show that, due to an uncertainty relation between the continuous representation and its Fourier-transform dual representation, the corresponding Deutsch-Jozsa algorithm is probabilistic hence forbids an exponential speed-up, contrary to a previous claim in the literature.
138 - Mark Adcock , Peter Hoyer , 2012
We study a simple-harmonic-oscillator quantum computer solving oracle decision problems. We show that such computers can perform better by using nonorthogonal Gaussian wave functions rather than orthogonal top-hat wave functions as input to the information encoding process. Using the Deutsch-Jozsa problem as an example, we demonstrate that Gaussian modulation with optimized width parameter results in a lower error rate than for the top-hat encoding. We conclude that Gaussian modulation can allow for an improved trade-off between encoding, processing and measurement of the information.
We consider systems of local variational problems defining non vanishing cohomolgy classes. In particular, we prove that the conserved current associated with a generalized symmetry, assumed to be also a symmetry of the variation of the corresponding local inverse problem, is variationally equivalent to the variation of the strong Noether current for the corresponding local system of Lagrangians. This current is conserved and a sufficient condition will be identified in order such a current be global.
120 - Evgeny Korotyaev 2020
We consider Sturm-Liouville problems on the finite interval. We show that spectral data for the case of Dirichlet boundary conditions are equivalent to spectral data for Neumann boundary conditions. In particular, the solution of the inverse problem for the first one is equivalent to the solution of the inverse problem for the second one. Moreover, we discuss similar results for other Sturm-Liouville problems, including a periodic case.
Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $max{c^top x colon A x = b,, x in mathbb{Z}^n_{geq 0}}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of $A$ and $|A|_{max}$. This class of problems is known under the name of ILP problems in the standard form, adding the word bounded if $x leq u$, for some integer vector $u$. Recently, many new sparsity, proximity, and complexity results were obtained for bounded and unbounded ILP problems in the standard form. In this paper, we consider ILP problems in the canonical form $$max{c^top x colon b_l leq A x leq b_r,, x in mathbb{Z}^n},$$ where $b_l$ and $b_r$ are integer vectors. We assume that the integer matrix $A$ has the rank $n$, $(n + m)$ rows, $n$ columns, and parameterize the problem by $m$ and $Delta(A)$, where $Delta(A)$ is the maximum of $n times n$ sub-determinants of $A$, taken in the absolute value. We show that any ILP problem in the standard form can be polynomially reduced to some ILP problem in the canonical form, preserving $m$ and $Delta(A)$, but the reverse reduction is not always possible. More precisely, we define the class of generalized ILP problems in the standard form, which includes an additional group constraint, and prove the equivalence to ILP problems in the canonical form. We generalize known sparsity, proximity, and complexity bounds for ILP problems in the canonical form. Additionally, sometimes, we strengthen previously known results for ILP problems in the canonical form, and, sometimes, we give shorter proofs. Finally, we consider the special cases of $m in {0,1}$. By this way, we give specialised sparsity, proximity, and complexity bounds for the problems on simplices, Knapsack problems and Subset-Sum problems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا