No Arabic abstract
We have used Molecular Beam Epitaxy (MBE)-based delta doping technology to demonstrate near 100% internal quantum efficiency (QE) on silicon electron-multiplied Charge Coupled Devices (EMCCDs) for single photon counting detection applications. Furthermore, we have used precision techniques for depositing antireflection (AR) coatings by employing Atomic Layer Deposition (ALD) and demonstrated over 50% external QE in the far and near-ultraviolet in megapixel arrays. We have demonstrated that other device parameters such as dark current are unchanged after these processes. In this paper, we report on these results and briefly discuss the techniques and processes employed.
UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320-900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m$^2$ detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98 % efficiency for the highest tested overvoltage, combined with a low probability of accidental counting ($sim$2 %), show a promising performance for this new system.
We develop a simple coordinate transformation which can be employed to compensate for the nonlinearity introduced by a Microwave Kinetic Inductance Detectors (MKID) homodyne readout scheme. This coordinate system is compared to the canonically used polar coordinates and is shown to improve the performance of the filtering method often used to estimate a photons energy. For a detector where the coordinate nonlinearity is primarily responsible for limiting its resolving power, this technique leads to increased dynamic range, which we show by applying the transformation to data from a hafnium MKID designed to be sensitive to photons with wavelengths in the 800 to 1300 nm range. The new coordinates allow the detector to resolve photons with wavelengths down to 400 nm, raising the resolving power at that wavelength from 6.8 to 17.
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic<13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm-1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048x2048 imaging array and 2048x2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.
We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a spatial resolution of 10 nm. We experimentally find a strong variation in the local detection efficiency of the device. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as function of device geometry.