Do you want to publish a course? Click here

UVSiPM: a light detector instrument based on a SiPM sensor working in single photon counting

220   0   0.0 ( 0 )
 Added by Teresa Mineo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320-900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.



rate research

Read More

68 - P. Lv , S.L. Xiong , X.L. Sun 2018
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) project is the planned Chinese space telescope for detecting the X and gamma-ray counterpart. It consists of two micro-satellites in low earth orbit with the advantages of instantaneous full-sky coverage, low energy threshold down to 6 keV and can be achieved within a short period and small budget. Due to the limitation of size, weight and power consumption of micro-satellites, silicon photomultipliers (SiPMs) are used to replace the photomultiplier tubes (PMTs) to assemble a novel gamma-ray detector. A prototype of a SiPM array with LaBr3 crystal is built and tested, and it shows a high detection efficiency (70% at 5.9 keV) and an acceptable uniformity. The low-energy X-ray of 5.9 keV can be detected by a simply readout circuit, and the energy resolution is 6.5% (FWHM) at 662 keV. The design and performance of the detector are discussed in detail in this paper.
165 - Shouleh Nikzad 2011
We have used Molecular Beam Epitaxy (MBE)-based delta doping technology to demonstrate near 100% internal quantum efficiency (QE) on silicon electron-multiplied Charge Coupled Devices (EMCCDs) for single photon counting detection applications. Furthermore, we have used precision techniques for depositing antireflection (AR) coatings by employing Atomic Layer Deposition (ALD) and demonstrated over 50% external QE in the far and near-ultraviolet in megapixel arrays. We have demonstrated that other device parameters such as dark current are unchanged after these processes. In this paper, we report on these results and briefly discuss the techniques and processes employed.
We present the first evaluation of a recently developed silicon-strip detector for photon-counting dual-energy breast tomosynthesis. The detector is well suited for tomosynthesis with high dose efficiency and intrinsic scatter rejection. A method was developed for measuring the spatial resolution of a system based on the detector in terms of the three-dimensional modulation transfer function (MTF). The measurements agreed well with theoretical expectations, and it was seen that depth resolution was won at the cost of a slightly decreased lateral resolution. This may be a justifiable trade-off as clinical images acquired with the system indicate improved conspicuity of breast lesions. The photon-counting detector enables dual-energy subtraction imaging with electronic spectrumsplitting. This improved the detectability of iodine in phantom measurements, and the detector was found to be stable over typical clinical acquisition times. A model of the energy resolution showed that further improvements are within reach by optimization of the detector.
268 - Y. Doi , Z. Wang , T. Ueda 2009
We describe a novel GaAs/AlGaAs double-quantum-well device for the infrared photon detection, called Charge-Sensitive Infrared Phototransistor (CSIP). The principle of CSIP detector is the photo-excitation of an intersubband transition in a QW as an charge integrating gate and the signal amplification by another QW as a channel with very high gain, which provides us with extremely high responsivity (10^4 -- 10^6 A/W). It has been demonstrated that the CSIP designed for the mid-infrared wavelength (14.7 um) has an excellent sensitivity; the noise equivalent power (NEP) of 7x10^-19 W/rHz with the quantum efficiency of ~2%. Advantages of the CSIP against the other highly sensitive detectors are, huge dynamic range of >10^6, low output impedance of 10^3 -- 10^4 Ohms, and relatively high operation temperature (>2K). We discuss possible applications of the CSIP to FIR photon detection covering 35 -- 60 um waveband, which is a gap uncovered with presently available photoconductors.
86 - D. Guberman 2017
With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا