No Arabic abstract
We examine the equilibrium properties of lattice bosons with attractive on-site interactions in the presence of a three-body hard-core constraint that stabilizes the system against collapse and gives rise to a dimer superfluid phase formed by virtual hopping processes of boson pairs. Employing quantum Monte Carlo simulations, the ground state phase diagram of this system on the square lattice is analyzed. In particular, we study the quantum phase transition between the atomic and dimer superfluid regime and analyze the nature of the superfluid-insulator transitions. Evidence is provided for the existence of a tricritical point along the saturation transition line, where the transition changes from being first-order to a continuous transition of the dilute bose gas of holes. The Berzinskii-Kosterlitz-Thouless transition from the dimer superfluid to the normal fluid is found to be consistent with an anomalous stiffness jump, as expected from the unbinding of half-vortices.
We consider a two-component Bose gas in two dimensions at low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, inter-species interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases.
We investigate one-dimensional three-body systems composed of two identical bosons and one imbalanced atom (impurity) with two-body and three-body zero-range interactions. For the case in the absence of three-body interaction, we give a complete phase diagram of the number of three-body bound states in the whole region of mass ratio via the direct calculation of the Skornyakov-Ter-Martirosyan equations. We demonstrate that other low-lying three-body bound states emerge when the mass of the impurity particle is not equal to another two identical particles. We can obtain not only the binding energies but also the corresponding wave functions. When the mass of impurity atom is vary large, there are at most three three-body bound states. We then study the effect of three-body zero-range interaction and unveil that it can induces one more three-body bound state at a certain region of coupling strength ratio under a fixed mass ratio.
We study clusters of the type A$_N$B$_M$ with $Nleq Mleq 3$ in a two-dimensional mixture of A and B bosons, with attractive AB and equally repulsive AA and BB interactions. In order to check universal aspects of the problem, we choose two very different models: dipolar bosons in a bilayer geometry and particles interacting via separable Gaussian potentials. We find that all the considered clusters are bound and that their energies are universal functions of the scattering lengths $a_{AB}$ and $a_{AA}=a_{BB}$, for sufficiently large attraction-to-repulsion ratios $a_{AB}/a_{BB}$. When $a_{AB}/a_{BB}$ decreases below $approx 10$, the dimer-dimer interaction changes from attractive to repulsive and the population-balanced AABB and AAABBB clusters break into AB dimers. Calculating the AAABBB hexamer energy just below this threshold, we find an effective three-dimer repulsion which may have important implications for the many-body problem, particularly for observing liquid and supersolid states of dipolar dimers in the bilayer geometry. The population-imbalanced ABB trimer, ABBB tetramer, and AABBB pentamer remain bound beyond the dimer-dimer threshold. In the dipolar model, they break up at $a_{AB}approx 2 a_{BB}$ where the atom-dimer interaction switches to repulsion.
We investigate the possible existence of the bound state in the system of three bosons interacting with each other via zero-radius potentials in two dimensions (it can be atoms confined in two dimensions or tri-exciton states in heterostructures or dihalogenated materials). The bosons are classified in two species (a,b) such that a-a and b-b pairs repel each other and a-b attract each other, forming the two-particle bound state with binding energy $epsilon_b^{(2)}$ (such as bi-exciton). We developed an efficient routine based on the proper choice of basis for analytic and numerical calculations. For zero-angular momentum we found the energies of the three-particle bound states $epsilon^{(3)}_b$ for wide ranges of the scattering lengths, and found a universal curve of $epsilon^{(3)}_b/epsilon^{(2)}_b$ which depends only on the scattering lengths but not the microscopic details of the interactions, this is in contrast to the three-dimensional Efimov effect, where a non-universal three-body parameter is needed.
We investigate the thermal properties of interacting spin-orbit coupled bosons with contact interactions in two spatial dimensions. To that end, we implement the complex Langevin method, motivated by the appearance of a sign problem, on a square lattice with periodic boundary conditions. We calculate the density equation of state non-perturbatively in a range of spin-orbit couplings and chemical potentials. Our results show that mean-field solutions tend to underestimate the average density, especially for stronger values of the spin-orbit coupling. Additionally, the finite nature of the simulation volume induces the formation of pseudo-condensates. These have been observed to be destroyed by the spin-orbit interactions.