Do you want to publish a course? Click here

Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler-mode waves

180   0   0.0 ( 0 )
 Added by Kris Kersten
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present multi-satellite observations indicating a strong correlation between large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. The microburst precipitation exhibits a bursty temporal structure similar to that of the observed large amplitude wave packets, suggesting a connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave--particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.



rate research

Read More

A range of nonlinear wave structures, including Langmuir waves, unipolar electric fields and bipolar electric fields, are often observed in association with whistler-mode chorus waves in the near-Earth space. We demonstrate that the three seemingly different nonlinear wave structures originate from the same nonlinear electron trapping process by whistler-mode chorus waves. The ratio of the Landau resonant velocity to the electron thermal velocity controls the type of nonlinear wave structures that will be generated.
Energetic electrons inside Earths outer Van Allen belt pose a major radiation threat to space-borne electronics that often play vital roles in our modern society. Ultra-relativistic electrons with energies greater than or equal to two Megaelectron-volt (MeV) are of particular interest due to their high penetrating ability, and thus forecasting these >=2 MeV electron levels has significant meaning to all space sectors. Here we update the latest development of the predictive model for MeV electrons inside the Earths outer radiation belt. The new version, called PreMevE-2E, focuses on forecasting ultra-relativistic electron flux distributions across the outer radiation belt, with no need of in-situ measurements except for at the geosynchronous (GEO) orbit. Model inputs include precipitating electrons observed in low-Earth-orbits by NOAA satellites, upstream solar wind conditions (speeds and densities) from solar wind monitors, as well as ultra-relativistic electrons measured by one Los Alamos GEO satellite. We evaluated a total of 32 supervised machine learning models that fall into four different classes of linear and neural network architectures, and also successfully tested ensemble forecasting by using groups of top-performing models. All models are individually trained, validated, and tested by in-situ electron data from NASAs Van Allen Probes mission. It is shown that the final ensemble model generally outperforms individual models overs L-shells, and this PreMevE-2E model provides reliable and high-fidelity 25-hr (~1-day) and 50-hr (~2-day) forecasts with high mean performance efficiency values. Our results also suggest this new model is dominated by non-linear components at low L-shells (< ~4) for ultra-relativistic electrons, which is different from the dominance of linear components at all L-shells for 1 MeV electrons as previously discovered.
Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation (SWEAP) on Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband whistler-mode waves at radial distances less than ~0.3 AU. We present two example intervals of a few hours that include 8 waveform captures with whistler-mode waves and 26 representative electron distributions that are examined in detail. Two were narrow; 17 were clearly broadened, and 8 were very broad. The two with narrow strahl occurred when there were either no whistlers or very intermittent low amplitude waves. Six of the eight broadest distributions were associated with intense, long duration waves. Approximately half of the observed electron distributions have features consistent with an energy dependent scattering mechanism, as would be expected from interactions with narrowband waves. A comparison of the wave power in the whistler-mode frequency band to pitch angle width and a measure of anisotropy provides additional evidence for the electron scattering by whistler-mode waves. The pitch angle broadening occurs in over an energy range comparable to that obtained for the n=1 (co-streaming) resonance for the observed wave and plasma parameters. The additional observation that the heat flux is lower in the interval with multiple switchbacks may provide clues to the nature of switchbacks. These results provide strong evidence that the heat flux is reduced by narroweband whistler-mode waves scattering of strahl-energy electrons.
Magnetic reconnection (MR) and the associated concurrently occurring waves have been extensively studied at large-scale plasma boundaries, in quasi-symmetric and asymmetric configurations in the terrestrial magnetotail and at the magnetopause. Recent high-resolution observations by MMS (Magnetospheric Multiscale) spacecraft indicate that MR can occur also in the magnetosheath where the conditions are highly turbulent when the upstream shock geometry is quasi-parallel. The strong turbulent motions make the boundary conditions for evolving MR complicated. In this paper it is demonstrated that the wave observations in localized regions of MR can serve as an additional diagnostic tool reinforcing our capacity for identifying MR events in turbulent plasmas. It is shown that in a close resemblance with MR at large-scale boundaries, turbulent reconnection associated whistler waves occur at separatrix/outflow regions and at the outer boundary of the electron diffusion region, while lower hybrid drift waves are associated with density gradients during the crossing of the current sheet. The lower hybrid drift instability can make the density inhomogeneities rippled. The identification of MR associated waves in the magnetosheath represents also an important milestone for developing a better understanding of energy redistribution and dissipation in turbulent plasmas.
AIM: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of ~0.2 fce (electron cyclotron frequency) are commonly observed at 1 AU, and are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.2 AU, and how their properties compare to those at 1 AU. METHODS: We utilize the waveform capture data from the Parker Solar Probe Fields instrument to develop a data base of narrowband whistler waves. The SWEAP instrument, in conjunction with the quasi-thermal noise measurement form Fields, provides the electron heat flux, beta, and other electron parameters. RESULTS: Parker Solar Probe observations inside ~0.3 AU show that the waves are more intermittent than at 1 AU, and are often interspersed with electrostatic whistler/Bernstein waves at higher frequencies. This is likely due to the more variable solar wind observed closer to the Sun. The whistlers usually occur within regions when the magnetic field is more variable and often with small increases in the solar wind speed. The near-sun whistler-mode waves are also narrowband and large amplitude, and associated with beta greater than 1. Wave angles are sometimes highly oblique (near the resonance cone), but angles have been determined for only a small fraction of the events. The association with heat flux and beta is generally consistent with the whistler fan instability although there are intervals where the heat flux is significantly lower than the instability limit. Strong scattering of strahl energy electrons is seen in association with the waves, providing evidence that the waves regulate the electron heat flux..
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا