The QCD phase diagram might exhibit a first order phase transition for large baryochemical potentials. We explore the cosmological implications of such a QCD phase transition in the early universe. We propose that the large baryon-asymmetry is diluted by a little inflation where the universe is trapped in a false vacuum state of QCD. The little inflation is stopped by bubble nucleation which leads to primordial production of the seeds of extragalactic magnetic fields, primordial black holes and gravitational waves. In addition the power spectrum of cold dark matter can be affected up to mass scales of a billion solar masses. The imprints of the cosmological QCD phase transition on the gravitational wave background can be explored with the future gravitational wave detectors LISA and BBO and with pulsar timing.
The standard model of particle physics is known to be intriguingly successful. However their rich phenomena represented by the phase transitions (PTs) have not been completely understood yet, including the possibility of the existence of unknown dark sectors. In this Letter, we investigate the measurement of the equation of state parameter $w$ and the sound speed $c_{rm s}$ of the PT plasma with use of the gravitational waves (GWs) of the universe. Though the propagation of GW is insensitive to $c_{rm s}$ in itself, the sound speed value affects the dynamics of primordial density (or scalar curvature) perturbations and the induced GW by their horizon reentry can then be an indirect probe both $w$ and $c_{rm s}$. We numerically reveal the concrete spectrum of the predicted induced GW with two simple examples of the scalar perturbation spectrum: the monochromatic and scale-invariant spectra. In the monochromatic case, we see that the resonant amplification and cancellation scales of the induced GW depend on the $c_{rm s}$ values at different time respectively. The scale-invariant case gives a more realistic spectrum and its specific shape will be compared with observations. In particular, the QCD phase transition corresponds with the frequency range of the pulsar timing array (PTA) observations. If the amplitude of primordial scalar power is in the range of $10^{-4}lesssim A_zetalesssim10^{-2}$, the induced GW is consistent with current observational constraints and detectable in the future observation in Square Kilometer Array. Futhermore the recent possible detection of stochastic GWs by NANOGrav 12.5 yr analysis~[1] can be explained by the induced GW if $A_zetasimsqrt{7}times10^{-3}$.
We present predictions for the second- and fourth-order curvature coefficients of the QCD phase transition line using the NNLO HTLpt-resummed thermodynamic potential. We present three cases corresponding to (i) $mu_s = mu_l = mu_B/3$, (ii) $mu_s=0$, $mu_l = mu_B/3,$ and (iii) $S = 0$, $Q/B = 0.4$, $mu_l = mu_B/3$. In all three cases, we find excellent agreement with continuum extrapolated lattice QCD results for $kappa_2$, given current statistical uncertainties. We also make HTLpt predictions for $kappa_4$ in all three cases, finding again excellent agreement with lattice extractions of this coefficient where available.
One of the biggest puzzles in modern cosmology is the observed baryon asymmetry in the universe. In current models of baryogenesis gravity plays a secondary role, although the process is believed to have happened in the early universe, under the influence of an intense gravitational field. In the present work we resume Sakharovs original program for baryogenesis and propose a central role for gravity in the process. This is achieved through a non-minimal coupling (NMC) between the gravitational field and both the strong interaction field and the quark fields. When in action, the present mechanism leads to baryon number non-conservation and CP violation. Moreover, the NMC induces reduced effective quark masses, which favours a first order QCD phase transition. As a consequence, a baryon asymmetry can be attained in the transition from the quark epoch to the hadron epoch.
We construct the effective potential for a QCD-like theory using the auxiliary field method. The chiral phase transition exhibited by the model at finite temperature and the quark chemical potential is studied from the viewpoint of the shape change of the potential near the critical point. We further generalize the effective potential so as to have quark number and scalar quark densities as independent variables near the tri-critical point.
The dynamics of a cosmological (de)confinement phase transition is studied in nearly conformally invariant field theories, where confinement is predominantly spontaneously generated and associated with a light dilaton field. We show how the leading contribution to the transition rate can be computed within the dilaton effective theory. In the context of Composite Higgs theories, we demonstrate that a simple scenario involving two renormalization-group fixed points can make the transition proceed much more rapidly than in the minimal scenario, thereby avoiding excessive dilution of matter abundances generated before the transition. The implications for gravitational wave phenomenology are discussed. In general, we find that more (less) rapid phase transitions are associated with weaker (stronger) gravitational wave signals. The various possible features of the strongly coupled composite Higgs phase transition discussed here can be concretely modeled at weak coupling within the AdS/CFT dual Randall-Sundrum extra-dimensional description, which offers important insights into the nature of the transition and its theoretical control. These aspects will be presented in a companion paper.