Do you want to publish a course? Click here

Effective Potential Study of the Chiral Phase Transition in a QCD-like Theory

65   0   0.0 ( 0 )
 Added by Yasuhiko Tsue
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We construct the effective potential for a QCD-like theory using the auxiliary field method. The chiral phase transition exhibited by the model at finite temperature and the quark chemical potential is studied from the viewpoint of the shape change of the potential near the critical point. We further generalize the effective potential so as to have quark number and scalar quark densities as independent variables near the tri-critical point.



rate research

Read More

160 - Yiannis Makris , Ivan Vitev 2019
The problem of quarkonium production in heavy ion collisions presents a set of unique theoretical challenges -- from the relevant production mechanism of $J/psi$ and $Upsilon$ to the relative significance of distinct cold and hot nuclear matter effects in the observed attenuation of quarkonia. Inthese proceedings we summarize recent work on the generalization of non-relativistic Quantum Chromodynamics (NRQCD) to include off-shell gluon (Glauber/Coulomb) interactions in strongly interacting matter. This new effective theory provides for the first time a universal microscopic description of the in-medium interaction of heavy quarkonia, consistently applicable to a range of phases such as cold nuclear matter, dense hadron gas, and quark-gluon plasma. It is an important step forward in understanding the common trends in proton-nucleus and nucleus-nucleus data on quarkonium suppression. We derive explicitly the leading and sub-leading interaction terms in the Lagrangian and show the connection of the leading result to existing phenomenology.
We study the unitarized meson-baryon scattering amplitude at leading order in the strangeness $S=-1$ sector using time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of chiral effective field theory. By solving the coupled-channel integral equations with the full off-shell dependence of the effective potential and applying subtractive renormalization, we analyze the renormalized scattering amplitudes and obtain the two-pole structure of the $Lambda(1405)$ resonance. We also point out the necessity of including higher-order terms.
The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. We calculate the transverse densities of the octet baryons at peripheral distances b = O(M_pi^{-1}) in an approach combining chiral effective field theory (ChEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t > 4 M_pi^2 are computed using relativistic ChEFT with octet and decuplet baryons in the EOMS renormalization scheme. The calculations are extended into the rho-meson mass region, using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b > 1 fm with controlled uncertainties. Our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.
After a review of the crystalline color superconductive (LOFF) phase, I discuss the Nambu Goldstone Boson associated with the breaking of rotational and translational invariance and I briefly consider possible astrophysical implications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا