Do you want to publish a course? Click here

Fully gapped superconductivity in SrNi$_2$P$_2$

216   0   0.0 ( 0 )
 Added by Nobuyuki Kurita
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the superconducting gap structure of SrNi$_2$P$_{2}$ ($T_c$=1.4 K) via low-temperature magneto-thermal conductivity $kappa(T,H)$ measurements. Zero field thermal conductivity $kappa$ decreases exponentially $kappa propto$ exp($-aT_c/T$) with $a$=1.5, in accord with the BCS theory, and rolls over to a phonon-like $kappapropto T^3$ behavior at low temperature, similar to a number of conventional s-wave superconductors. In addition, we observed a concave field dependence of the residual linear term $kappa_0(H)/T$. These facts strongly rule out the presence of nodes in the superconducting energy gap of SrNi$_2$P$_{2}$. Together with a fully gapped Fermi surface in the superconducting state of BaNi$_2$As$_{2}$ ($T_c$=0.6-0.7 K), demonstrated in our recent work, these results lead us to postulate that fully gapped superconductivity is a universal feature of Ni-based pnictide superconductors.



rate research

Read More

149 - F. Ronning , E.D. Bauer , T. Park 2009
Heat capacity, magnetic susceptibility, NMR, and resistivity of SrNi2P2 single crystals are presented, illustrating a purely structural transition at 325 K with no magnetism. Bulk superconductivity is found at 1.4 K. The magnitude of the transition temperature T_c, fits to the heat capacity data, the small upper critical field $H_{c2}$ = 390 Oe, and Ginzburg-Landau parameter $kappa$ = 2.1 suggests a conventional fully gapped superconductor. With applied pressure a second structural phase transition occurs which results in an 8% reduction in the c/a ratio of lattice parameters. We find that superconductivity persists into this high pressure phase, although the transition temperature is monotonically suppressed with increasing pressure. Comparison of these Ni-P data as well as layered Fe-As and Ni-As superconductor indicates that reduced dimensionality can be a mechanism for increasing the transition temperature.
We investigate the superconducting gap function of topological superconductor PbTaSe$_2$. Temperature, magnetic field, and three-dimensional (3D) field-angle dependences of the specific heat prove that the superconductivity of PbTaSe$_2$ is fully-gapped, with two isotropic $s$-wave gaps. The pair-breaking effect is probed by systematically increasing non-magnetic disorders through H$^+$-irradiations. The superconducting transition temperature, $T_{rm{c}}$, is found to be robust against disorders, which suggests that the pairing should be sign-preserved rather than sign-reversed.
We performed an angle-resolved photoemission spectroscopy study of the Ni-based superconductor SrNi$_2$As$_2$. Electron and hole Fermi surface pockets are observed, but their different shapes and sizes lead to very poor nesting conditions. The experimental electronic band structure of SrNi$_2$As$_2$ is in good agreement with first-principles calculations after a slight renormalization (by a factor 1.1), confirming the picture of Hunds exchange-dominated electronic correlations decreasing with increasing filling of the $3d$ shell in the Fe-, Co- and Ni-based compounds. These findings emphasize the importance of Hunds coupling and $3d$-orbital filling as key tuning parameters of electronic correlations in transition metal pnictides.
We have performed low-temperature specific heat $C$ and thermal conductivity $kappa$ measurements on the Ni-pnictide superconductors BaNi$_2$As$_2$ ($T_mathrm{c}$=0.7 K and SrNi$_2$P$_2$ ($T_mathrm{c}$=1.4 K). The temperature dependences $C(T)$ and $kappa(T)$ of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual $kappa$ for BaNi$_2$As$_2$ rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba$_{0.6}$La$_{0.4}$Ni$_2$As$_2$ shows a mild suppression of $T_mathrm{c}$ and $H_mathrm{c2}$ relative to BaNi$_2$As$_2$.
466 - T. Shang , A. Amon , D. Kasinathan 2019
In search of the origin of superconductivity in diluted rhenium superconductors and their significantly enhanced $T_c$ compared to pure Be (0.026 K), we investigated the intermetallic ReBe$_{22}$ compound, mostly by means of muon-spin rotation/relaxation ($mu$SR). At a macroscopic level, its bulk superconductivity (with $T_c=9.4$ K) was studied via electrical resistivity, magnetization, and heat-capacity measurements. The superfluid density, as determined from transverse-field $mu$SR and electronic specific-heat measurements, suggest that ReBe$_{22}$ is a fully-gapped superconductor with some multigap features. The larger gap value, $Delta_0^l=1.78$ k$_mathrm{B}T_c$, with a weight of almost 90%, is slightly higher than that expected from the BCS theory in the weak-coupling case. The multigap feature, rather unusal for an almost elemental superconductor, is further supported by the field-dependent specific-heat coefficient, the temperature dependence of the upper critical field, as well as by electronic band-structure calculations. The absence of spontaneous magnetic fields below $T_c$, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of ReBe$_{22}$. In general, we find that a dramatic increase in the density of states at the Fermi level and an increase in the electron-phonon coupling strength, both contribute to the highly enhanced $T_c$ value of ReBe$_{22}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا