Do you want to publish a course? Click here

Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators

87   0   0.0 ( 0 )
 Added by Tobias Beckmann
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whispering gallery resonators (WGRs), based on total internal reflection, possess high quality factors in a broad spectral range. Thus, nonlinear optical processes in such cavities are ideally suited for the generation of broadband or tunable electromagnetic radiation. Experimentally and theoretically, we investigate the tunability of optical parametric oscillation in a radially structured WGR made of lithium niobate. With a 1.04 /mum pump wave, the signal and idler waves are tuned from 1.78 to 2.5 mum - including the point of degeneracy - by varying the temperature between 20 and 62 {deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.

rate research

Read More

We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.
138 - J. T. Rubin , L. Deych 2011
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.
Titanium doped sapphire (Ti:sapphire) is a laser gain material with broad gain bandwidth benefiting from the material stability of sapphire. These favorable characteristics of Ti:sapphire have given rise to femtosecond lasers and optical frequency combs. Shaping a single Ti:sapphire crystal into a millimeter sized high quality whispering gallery mode resonator ($Qsim10^8$) reduces the lasing threshold to 14.2 mW and increases the laser slope efficiency to 34%. The observed lasing can be both multi-mode and single-mode. This is the first demonstration of a Ti:sapphire whispering-gallery laser. Furthermore, a novel method of evaluating the gain in Ti:sapphire in the near infrared region is demonstrated by introducing a probe laser with a central wavelength of 795 nm. This method results in decreasing linewidth of the modes excited with the probe laser, consequently increasing their $Q$. These findings open avenues for the usage of whispering gallery mode resonators as cavities for the implementation of compact Ti:sapphire lasers. Moreover, Ti:sapphire can also be utilized as an amplifier inside its gain bandwidth by implementing a pump-probe configuration.
Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.
We demonstrate that yttrium iron garnet microspheres support optical whispering gallery modes similar to those in non-magnetic dielectric materials. The direction of the ferromagnetic moment tunes both the resonant frequency via the Voigt effect as well as the degree of polarization rotation via the Faraday effect. An understanding of the magneto-optical coupling in whispering gallery modes, where the propagation direction rotates with respect to the magnetization, is fundamental to the emerging field of cavity optomagnonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا