Do you want to publish a course? Click here

X-ray Signatures of Non-Equilibrium Ionization Effects in Galaxy Cluster Accretion Shock Regions

162   0   0.0 ( 0 )
 Added by Ka-Wah Wong
 Publication date 2010
  fields Physics
and research's language is English
 Authors Ka-Wah Wong




Ask ChatGPT about the research

The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the LambdaCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ~130-380 ksec on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.



rate research

Read More

During transient events such as major solar eruptions, the plasma can be far from the equilibrium ionization state because of rapid heating or cooling. Non-equilibrium ionization~(NEI) is important in rapidly evolving systems where the thermodynamical timescale is shorter than the ionization or recombination time scales. We investigate the effects of NEI on EUV and X-ray observations by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory and X-ray Telescope (XRT) on board Hinode. Our model assumes that the plasma is initially in ionization equilibrium at low temperature, and it is heated rapidly by a shock or magnetic reconnection. We tabulate the responses of the AIA and XRT passbands as functions of temperature and a characteristic timescale, $n_{e}t$. We find that most of the ions reach equilibrium at $n_{e}tleq$10$^{12}$ cm$^{-3}$s. Comparing ratios of the responses between different passbands allows us to determine whether a combination of plasmas at temperatures in ionization equilibrium can account for a given AIA and XRT observation. It also expresses how far the observed plasma is from equilibrium ionization. We apply the ratios to a supra-arcade plasma sheet on 2012 January 27. We find that the closer the plasma is to the arcade, the closer it is to a single-temperature plasma in ionization equilibrium. We also utilize the set of responses to estimate the temperature and density for shocked plasma associated with a coronal mass ejection on 2010 June 13. The temperature and density ranges we obtain are in reasonable agreement with previous works.
Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample ($f_textrm{X,500}geq 5times10^{-12}$ erg s$^{-1}$ cm$^{-2}$ in the $0.1-2.4$ keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.
ClusterPyXT is a new software pipeline to generate spectral temperature, X-ray surface brightness, pressure, and density maps from X-ray observations of galaxy clusters. These data products help elucidate the physics of processes occurring within clusters of galaxies, including turbulence, shock fronts, nonthermal phenomena, and the overall dynamics of cluster mergers. ClusterPyXT automates the creation of these data products with minimal user interaction, and allows for rapid analyses of archival data with user defined parameters and the ability to straightforwardly incorporate additional observations. In this paper, we describe in detail the use of this code and release it as an open source Python project on GitHub.
239 - Q. Daniel Wang 2014
The thermal, chemical, and kinematic properties of the potentially multi-phase circum/inter-galactic medium at the virial radii of galaxy clusters remain largely uncertain. We present an X-ray study of Abell 2246 and GMBCG J255.34805+64.23661 (z=0.23 and 0.45), two foreground clusters of the UV-bright QSO HS 1700+6416, based on 240 ks Chandra/ACIS-I observations. We detect enhanced diffuse X-ray emission to the projected distances beyond r_{200} radii of these two clusters. The large-scale X-ray emission is consistent with being azimuthally symmetric at the projected radii of the QSO (0.36 and 0.8 times the radii of the two clusters). Assuming a spherical symmetry, we obtain the de-projected temperature and density profiles of the X-ray-emitting gas. Excluding the cool cores that are detected, we find that the mean temperature of the hot gas is about 4.0 keV for Abell 2246 and 5.5 keV for GMBCG J255.34805+64.23661, although there are indications for temperature drop at large radii. From these results, we can estimate the density and pressure distributions of the hot gas along the QSO sightline. We further infer the radial entropy profile of Abell 2246 and compare it with the one expected from purely gravitational hierarchical structure formation. This comparison shows that the ICM in the outer region of the clusters is likely in a clumpy and multi-phased state. These results, together with the upcoming HST/COS observations of the QSO sightline, will enable a comprehensive investigation of the multi-phase medium associated with the clusters.
Prediction of the soft X-ray absorption along lines of sight through our Galaxy is crucial for understanding the spectra of extragalactic sources, but requires a good estimate of the foreground column density of photoelectric absorbing species. Assuming uniform elemental abundances this reduces to having a good estimate of the total hydrogen column density, N(Htot)=N(HI)+2N(H2). The atomic component, N(HI), is reliably provided using the mapped 21 cm radio emission but estimating the molecular hydrogen column density, N(H2), expected for any particular direction, is difficult. The X-ray afterglows of GRBs are ideal sources to probe X-ray absorption in our Galaxy because they are extragalactic, numerous, bright, have simple spectra and occur randomly across the entire sky. We describe an empirical method, utilizing 493 afterglows detected by the Swift XRT, to determine N(Htot) through the Milky Way which provides an improved estimate of the X-ray absorption in our Galaxy and thereby leads to more reliable measurements of the intrinsic X-ray absorption and, potentially, other spectral parameters, for extragalactic X-ray sources. We derive a simple function, dependent on the product of the atomic hydrogen column density, N(HI), and dust extinction, E(B-V), which describes the variation of the molecular hydrogen column density, N(H2), of our Galaxy, over the sky. Using the resulting N(Htot) we show that the dust-to-hydrogen ratio is correlated with the carbon monoxide emission and use this ratio to estimate the fraction of material which forms interstellar dust grains. Our resulting recipe represents a significant revision in Galactic absorption compared to previous standard methods, particularly at low Galactic latitudes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا