Do you want to publish a course? Click here

X-ray mapping the outer regions of galaxy clusters at z= 0.23 and 0.45

237   0   0.0 ( 0 )
 Added by Q. Daniel Wang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal, chemical, and kinematic properties of the potentially multi-phase circum/inter-galactic medium at the virial radii of galaxy clusters remain largely uncertain. We present an X-ray study of Abell 2246 and GMBCG J255.34805+64.23661 (z=0.23 and 0.45), two foreground clusters of the UV-bright QSO HS 1700+6416, based on 240 ks Chandra/ACIS-I observations. We detect enhanced diffuse X-ray emission to the projected distances beyond r_{200} radii of these two clusters. The large-scale X-ray emission is consistent with being azimuthally symmetric at the projected radii of the QSO (0.36 and 0.8 times the radii of the two clusters). Assuming a spherical symmetry, we obtain the de-projected temperature and density profiles of the X-ray-emitting gas. Excluding the cool cores that are detected, we find that the mean temperature of the hot gas is about 4.0 keV for Abell 2246 and 5.5 keV for GMBCG J255.34805+64.23661, although there are indications for temperature drop at large radii. From these results, we can estimate the density and pressure distributions of the hot gas along the QSO sightline. We further infer the radial entropy profile of Abell 2246 and compare it with the one expected from purely gravitational hierarchical structure formation. This comparison shows that the ICM in the outer region of the clusters is likely in a clumpy and multi-phased state. These results, together with the upcoming HST/COS observations of the QSO sightline, will enable a comprehensive investigation of the multi-phase medium associated with the clusters.



rate research

Read More

X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.
Observational constraints on the average radial distribution profile of AGN in distant galaxy clusters can provide important clues on the triggering mechanisms of AGN activity in dense environments and are essential for a completeness evaluation of cluster selection techniques in the X-ray and mm-wavebands. The aim of this work is a statistical study with XMM-Newton of the presence and distribution of X-ray AGN in the large-scale structure environments of 22 X-ray luminous galaxy clusters in the redshift range 0.9 < z lesssim 1.6 compiled by the XMM-Newton Distant Cluster Project (XDCP). To this end, the X-ray point source lists from detections in the soft-band (0.35-2.4 keV) and full-band (0.3-7.5 keV) were stacked in cluster-centric coordinates and compared to average background number counts extracted from three independent control fields in the same observations. A significant full-band (soft-band) excess of sim78 (67) X-ray point sources is found in the cluster fields within an angular distance of 8 (4Mpc) at a statistical confidence level of 4.0 sigma (4.2 sigma), corresponding to an average number of detected excess AGN per cluster environment of 3.5pm0.9 (3.0pm0.7). The data point towards a rising radial profile in the cluster region (r<1Mpc) of predominantly low-luminosity AGN with an average detected excess of about one point source per system, with a tentative preferred occurrence along the main cluster elongation axis. A second statistically significant overdensity of brighter soft-band detected AGN is found at cluster-centric distances of 4-6 (2-3Mpc), corresponding to about three times the average cluster radius R200 of the systems. If confirmed, these results would support the idea of two different physical triggering mechanisms of X-ray AGN activity in dependence of the radially changing large-scale structure environment of the distant clusters.
162 - D. Eckert , F. Vazza , S. Ettori 2011
We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]
Fluctuations of the surface brightness of cosmic X-ray background (CXB) carry unique information about faint and low luminosity source populations, which is inaccessible for conventional large-scale structure (LSS) studies based on resolved sources. We used Chandra data of the XBOOTES field ($sim9,mathrm{deg^2}$) to conduct the most accurate measurement to date of the power spectrum of fluctuations of the unresolved CXB on the angular scales of $sim3,$arcsec $-$ $sim17,$arcmin. We find that at sub-arcmin angular scales, the power spectrum is consistent with the AGN shot noise, without much need for any significant contribution from their one-halo term. This is consistent with the theoretical expectation that low-luminosity AGN reside alone in their dark matter halos. However, at larger angular scales we detect a significant LSS signal above the AGN shot noise. Its power spectrum, obtained after subtracting the AGN shot noise, follows a power law with the slope of $-0.8pm0.1$ and its amplitude is much larger than what can be plausibly explained by the two-halo term of AGN. We demonstrate that the detected LSS signal is produced by unresolved clusters and groups of galaxies. For the flux limit of the XBOOTES survey, their flux-weighted mean redshift equals $left<zright>sim0.3$, and the mean temperature of their intracluster medium (ICM), $left<Tright>approx 1.4$ keV, corresponds to the mass of $M_{500} sim 10^{13.5},mathrm{M}_odot$. The power spectrum of CXB fluctuations carries information about the redshift distribution of these objects and the spatial structure of their ICM on the linear scales of up to $sim$Mpc, i.e. of the order of the virial radius.
161 - Ka-Wah Wong 2010
The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the LambdaCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ~130-380 ksec on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا