Do you want to publish a course? Click here

Finite Element Simulation of the Optical Modes of Semiconductor Lasers

78   0   0.0 ( 0 )
 Added by Sven Burger
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present article we investigate optical near fields in semiconductor lasers. We perform finite element simulations for two different laser types, namely a super large optical waveguide (SLOW) laser, which is an edge emitter, and a vertical cavity surface emitting laser (VCSEL). We give the mathematical formulation of the different eigenvalue problems that arise for our examples and explain their numerical solution with the finite element method. Thereby, we also comment on the usage of transparent boundary conditions, which have to be applied to respect the exterior environment, e.g., the very large substrate and surrounding air. For the SLOW laser we compare the computed near fields to experimental data for different design parameters of the device. For the VCSEL example a comparison to simplified 1D mode calculations is carried out.

rate research

Read More

We theoretically investigate the possibility of generating pulses in an excitable (asymmetric) semiconductor ring laser (SRL) using optical trigger pulses. We show that the phase difference between the injected field and the electric field inside the SRL determines the direction of the perturbation in phase space. Due to the folded shape of the excitability threshold, this has an important influence on the ability to cross it. A mechanism for exciting multiple consecutive pulses using a single trigger pulse (i.e. multi pulse excitability) is revealed. We furthermore investigate the possibility of using asymmetric SRLs in a coupled configuration, which is a first step toward an all-optical neural network using SRLs as building blocks.
We demonstrate lasing mode selection in nearly circular semiconductor microdisks by shaping the spatial profile of optical pump. Despite of strong mode overlap, adaptive pumping suppresses all lasing modes except the targeted one. Due to slight deformation of the cavity shape and boundary roughness, each lasing mode has distinct emission pattern. By selecting different mode to be the dominant lasing mode, we can switch both the lasing frequency and the output direction. Such tunability by external pump after the laser is fabricated enhances the functionality of semiconductor microcavity lasers.
We experimentally demonstrate the existence of non dispersive solitary waves associated with a 2$pi$ phase rotation in a strongly multimode ring semiconductor laser with coherent forcing. Similarly to Bloch domain walls, such structures host a chiral charge. The numerical simulations based on a set of effective Maxwell-Bloch equations support the experimental evidence that only one sign of chiral charge is stable, which strongly affects the motion of the phase solitons. Furthermore, the reduction of the model to a modified Ginzburg Landau equation with forcing demonstrates the generality of these phenomena and exposes the impact of the lack of parity symmetry in propagative optical systems.
A finite element program is presented to simulate the process of packing and coiling elastic wires in two- and three-dimensional confining cavities. The wire is represented by third order beam elements and embedded into a corotational formulation to capture the geometric nonlinearity resulting from large rotations and deformations. The hyperbolic equations of motion are integrated in time using two different integration methods from the Newmark family: an implicit iterative Newton-Raphson line search solver, and an explicit predictor-corrector scheme, both with adaptive time stepping. These two approaches reveal fundamentally different suitability for the problem of strongly self-interacting bodies found in densely packed cavities. Generalizing the spherical confinement symmetry investigated in recent studies, the packing of a wire in hard ellipsoidal cavities is simulated in the frictionless elastic limit. Evidence is given that packings in oblate spheroids and scalene ellipsoids are energetically preferred to spheres.
Detailed experimental and theoretical investigations on two coupled fiber lasers, each with many longitudinal modes, reveal that the behavior of the longitudinal modes depends on both the coupling strength as well as the detuning between them. For low to moderate coupling strength only longitudinal modes which are common for both lasers phase-lock while those that are not common gradually disappear. For larger coupling strengths, the longitudinal modes that are not common reappear and phase-lock. When the coupling strength approaches unity the coupled lasers behave as a single long cavity with correspondingly denser longitudinal modes. Finally, we show that the gradual increase in phase-locking as a function of the coupling strength results from competition between phase-locked and non phase-locked longitudinal modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا