Do you want to publish a course? Click here

A short and elementary proof of Hanners theorem

268   0   0.0 ( 0 )
 Added by Aasa Feragen
 Publication date 2010
  fields
and research's language is English
 Authors Aasa Feragen




Ask ChatGPT about the research

Hanners theorem is a classical theorem in the theory of retracts and extensors in topological spaces, which states that a local ANE is an ANE. While Hanners original proof of the theorem is quite simple for separable spaces, it is rather involved for the general case. We provide a proof which is not only short, but also elementary, relying only on well-known classical point-set topology.



rate research

Read More

We initiate the study of ends of non-metrizable manifolds and introduce the notion of short and long ends. Using the theory developed, we provide a characterization of (non-metrizable) surfaces that can be written as the topological sum of a metrizable manifold plus a countable number of long pipes in terms of their spaces of ends; this is a direct generalization of Nyikoss bagpipe theorem.
155 - Gareth A. Jones 2019
Greenberg proved that every countable group $A$ is isomorphic to the automorphism group of a Riemann surface, which can be taken to be compact if $A$ is finite. We give a short and explicit algebraic proof of this for finitely generated groups $A$.
92 - Nico Spronk 2016
We outline a simple proof of Hulanickis theorem, that a locally compact group is amenable if and only if the left regular representation weakly contains all unitary representations. This combines some elements of the literature which have not appeared together, before.
85 - Werner Kirsch 2018
A sequence of random variables is called exchangeable if the joint distribution of the sequence is unchanged by any permutation of the indices. De Finettis theorem characterizes all ${0,1}$-valued exchangeable sequences as a mixture of sequences of independent random variables. We present an new, elementary proof of de Finettis Theorem. The purpose of this paper is to make this theorem accessible to a broader community through an essentially self-contained proof.
62 - Florian K. Richter 2020
Let $Omega(n)$ denote the number of prime factors of $n$. We show that for any bounded $fcolonmathbb{N}tomathbb{C}$ one has [ frac{1}{N}sum_{n=1}^N, f(Omega(n)+1)=frac{1}{N}sum_{n=1}^N, f(Omega(n))+mathrm{o}_{Ntoinfty}(1). ] This yields a new elementary proof of the Prime Number Theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا