Do you want to publish a course? Click here

A short proof of Greenbergs Theorem

156   0   0.0 ( 0 )
 Added by Gareth Jones
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Greenberg proved that every countable group $A$ is isomorphic to the automorphism group of a Riemann surface, which can be taken to be compact if $A$ is finite. We give a short and explicit algebraic proof of this for finitely generated groups $A$.



rate research

Read More

92 - Nico Spronk 2016
We outline a simple proof of Hulanickis theorem, that a locally compact group is amenable if and only if the left regular representation weakly contains all unitary representations. This combines some elements of the literature which have not appeared together, before.
259 - Aasa Feragen 2010
Hanners theorem is a classical theorem in the theory of retracts and extensors in topological spaces, which states that a local ANE is an ANE. While Hanners original proof of the theorem is quite simple for separable spaces, it is rather involved for the general case. We provide a proof which is not only short, but also elementary, relying only on well-known classical point-set topology.
212 - Bruce Kleiner 2007
We give a new proof of Gromovs theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. Unlike the original proof, it does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
262 - Michiel de Bondt 2018
We give a short proof of a theorem of J.-E. Pin (theorem 1.1 below), which can be found in his thesis.
The goal of this paper is to give a group-theoretic proof of the congruence subgroup property for $Aut(F_2)$, the group of automorphisms of a free group on two generators. This result was first proved by Asada using techniques from anabelian geometry, and our proof is, to a large extent, a translation of Asadas proof into group-theoretic language. This translation enables us to simplify many parts of Asadas original argument and prove a quantitative version of the congruence subgroup property for $Aut(F_2)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا