Do you want to publish a course? Click here

Tensor-SIFT based Earth Movers Distance for Contour Tracking

113   0   0.0 ( 0 )
 Added by Peihua Li
 Publication date 2010
and research's language is English
 Authors Peihua Li




Ask ChatGPT about the research

Contour tracking in adverse environments is a challenging problem due to cluttered background, illumination variation, occlusion, and noise, among others. This paper presents a robust contour tracking method by contributing to some of the key issues involved, including (a) a region functional formulation and its optimization; (b) design of a robust and effective feature; and (c) development of an integrated tracking algorithm. First, we formulate a region functional based on robust Earth Movers distance (EMD) with kernel density for distribution modeling, and propose a two-phase method for its optimization. In the first phase, letting the candidate contour be fixed, we express EMD as the transportation problem and solve it by the simplex algorithm. Next, using the theory of shape derivative, we make a perturbation analysis of the contour around the best solution to the transportation problem. This leads to a partial differential equation (PDE) that governs the contour evolution. Second, we design a novel and effective feature for tracking applications. We propose a dimensionality reduction method by tensor decomposition, achieving a low-dimensional description of SIFT features called Tensor-SIFT for characterizing local image region properties. Applicable to both color and gray-level images, Tensor-SIFT is very distinctive, insensitive to illumination changes, and noise. Finally, we develop an integrated algorithm that combines various techniques of the simplex algorithm, narrow-band level set and fast marching algorithms. Particularly, we introduce an inter-frame initialization method and a stopping criterion for the termination of PDE iteration. Experiments in challenging image sequences show that the proposed work has promising performance.



rate research

Read More

In the context of single-label classification, despite the huge success of deep learning, the commonly used cross-entropy loss function ignores the intricate inter-class relationships that often exist in real-life tasks such as age classification. In this work, we propose to leverage these relationships between classes by training deep nets with the exact squared Earth Movers Distance (also known as Wasserstein distance) for single-label classification. The squared EMD loss uses the predicted probabilities of all classes and penalizes the miss-predictions according to a ground distance matrix that quantifies the dissimilarities between classes. We demonstrate that on datasets with strong inter-class relationships such as an ordering between classes, our exact squared EMD losses yield new state-of-the-art results. Furthermore, we propose a method to automatically learn this matrix using the CNNs own features during training. We show that our method can learn a ground distance matrix efficiently with no inter-class relationship priors and yield the same performance gain. Finally, we show that our method can be generalized to applications that lack strong inter-class relationships and still maintain state-of-the-art performance. Therefore, with limited computational overhead, one can always deploy the proposed loss function on any dataset over the conventional cross-entropy.
In this paper, we tackle a problem of predicting phenotypes from structural connectomes. We propose that normalized Laplacian spectra can capture structural properties of brain networks, and hence graph spectral distributions are useful for a task of connectome-based classification. We introduce a kernel that is based on earth movers distance (EMD) between spectral distributions of brain networks. We access performance of an SVM classifier with the proposed kernel for a task of classification of autism spectrum disorder versus typical development based on a publicly available dataset. Classification quality (area under the ROC-curve) obtained with the EMD-based kernel on spectral distributions is 0.71, which is higher than that based on simpler graph embedding methods.
Sparse coding (Sc) has been studied very well as a powerful data representation method. It attempts to represent the feature vector of a data sample by reconstructing it as the sparse linear combination of some basic elements, and a $L_2$ norm distance function is usually used as the loss function for the reconstruction error. In this paper, we investigate using Sc as the representation method within multi-instance learning framework, where a sample is given as a bag of instances, and further represented as a histogram of the quantized instances. We argue that for the data type of histogram, using $L_2$ norm distance is not suitable, and propose to use the earth movers distance (EMD) instead of $L_2$ norm distance as a measure of the reconstruction error. By minimizing the EMD between the histogram of a sample and the its reconstruction from some basic histograms, a novel sparse coding method is developed, which is refereed as SC-EMD. We evaluate its performances as a histogram representation method in tow multi-instance learning problems --- abnormal image detection in wireless capsule endoscopy videos, and protein binding site retrieval. The encouraging results demonstrate the advantages of the new method over the traditional method using $L_2$ norm distance.
Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-constrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for various NLP tasks. %motivated by the intuition that different NLP tasks require different levels of linguistic knowledge contained in the intermediate layers of BERT. In addition, we leverage Earth Movers Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables the effective matching for many-to-many layer mapping. %EMD can be applied to network layers with different sizes and effectively measures semantic distance between the teacher network and student network. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the models performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression.
The word movers distance (WMD) is a fundamental technique for measuring the similarity of two documents. As the crux of WMD, it can take advantage of the underlying geometry of the word space by employing an optimal transport formulation. The original study on WMD reported that WMD outperforms classical baselines such as bag-of-words (BOW) and TF-IDF by significant margins in various datasets. In this paper, we point out that the evaluation in the original study could be misleading. We re-evaluate the performances of WMD and the classical baselines and find that the classical baselines are competitive with WMD if we employ an appropriate preprocessing, i.e., L1 normalization. However, this result is not intuitive. WMD should be superior to BOW because WMD can take the underlying geometry into account, whereas BOW cannot. Our analysis shows that this is due to the high-dimensional nature of the underlying metric. We find that WMD in high-dimensional spaces behaves more similarly to BOW than in low-dimensional spaces due to the curse of dimensionality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا