Do you want to publish a course? Click here

A $q$-Identity Related to a Comodule

604   0   0.0 ( 0 )
 Added by Andrea Jedwab
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we show that a certain algebra being a comodule algebra over the Taft Hopf algebra of dimension $n^2$ is equivalent to a set of identities related to the $q$-binomial coefficient, when $q$ is a primitive $n^{th}$ root of 1. We then give a direct combinatorial proof of these identities.



rate research

Read More

185 - S. Paul Smith 2011
Let A denote the ring of differential operators on the affine line with its two usual generators t and d/dt given degrees +1 and -1 respectively. Let X be the stack having coarse moduli space the affine line Spec k[z] and isotropy groups Z/2 at each integer point. Then the category of graded A-modules is equivalent to the category of quasi-coherent sheaves on X. Version 2: corrected typos and deleted appendix at referees suggestion.
106 - A.Kuniba , M.Okado , J.Suzuki 2001
We introduce a factorized difference operator L(u) annihilated by the Frenkel-Reshetikhin screening operator for the quantum affine algebra U_q(C^{(1)}_n). We identify the coefficients of L(u) with the fundamental q-characters, and establish a number of formulas for their higher analogues. They include Jacobi-Trudi and Weyl type formulas, canceling tableau sums, Casorati determinant solution to the T-system, and so forth. Analogous operators for the orthogonal series U_q(B^{(1)}_n) and U_q(D^{(1)}_n) are also presented.
In terms of the $q$-Saalsch{u}tz identity and the Chinese remainder theorem for coprime polynomials, we establish some $q$-supercongruences modulo the third power of a cyclotomic polynomial. In particular, we give a $q$-analogue of a formula due to Long and Ramakrishna [Adv. Math. 290 (2016), 773--808].
170 - Victor J. W. Guo 2020
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ sum_{k=0}^{p-1}(-1)^k (3k+1)frac{(frac{1}{2})_k^3}{k!^3} 2^{3k} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ sum_{k=0}^{(p-1)/2}frac{(frac{1}{2})_k^2}{k!^2} equiv (-1)^{(p-1)/2}+p^2 E_{p-3} pmod{p^3}. $$
This paper is a fundamental study of comodules and contramodules over a comonoid in a closed monoidal category. We study both algebraic and homotopical aspects of them. Algebraically, we enrich the comodule and contramodule categories over the original category, construct enriched functors between them and enriched adjunctions between the functors. Homotopically, for simplicial sets and topological spaces, we investigate the categories of comodules and contramodules and the relations between them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا