Do you want to publish a course? Click here

Difference L operators related to q-characters

107   0   0.0 ( 0 )
 Added by Atsuo Kuniba
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a factorized difference operator L(u) annihilated by the Frenkel-Reshetikhin screening operator for the quantum affine algebra U_q(C^{(1)}_n). We identify the coefficients of L(u) with the fundamental q-characters, and establish a number of formulas for their higher analogues. They include Jacobi-Trudi and Weyl type formulas, canceling tableau sums, Casorati determinant solution to the T-system, and so forth. Analogous operators for the orthogonal series U_q(B^{(1)}_n) and U_q(D^{(1)}_n) are also presented.



rate research

Read More

213 - Hongyan Guo 2021
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$. We also introduce and study a category $mathcal{O}$ of $widetilde{V}_{q}$-modules. More precisely, we obtain a realization of $widetilde{V}_{q}$ as a covariant algebra of the affine Lie algebra $widehat{mathcal{A}^{*}}$, where $mathcal{A}^{*}$ is a 1-dimensional central extension of $mathcal{A}$. We prove that restricted $widetilde{V_{q}}$-modules of level $ell_{12}$ correspond to $mathbb{Z}$-equivariant $phi$-coordinated quasi-modules for the vertex algebra $V_{widetilde{mathcal{A}}}(ell_{12},0)$, where $widetilde{mathcal{A}}$ is a generalized affine Lie algebra of $mathcal{A}$. In the end, we show that objects in the category $mathcal{O}$ are restricted $widetilde{V_{q}}$-modules, and we classify simple modules in the category $mathcal{O}$.
For the quantum algebra U_q(gl(n+1)) in its reduction on the subalgebra U_q(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Z_q(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra U_q(u(n,1)) which is a real form of U_q(gl(n+1)), namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form.
We set up a framework for discussing `$q$-analogues of the usual covariant differential operators for hermitian symmetric spaces. This turns out to be directly related to the deformation quantization associated to quadratic algebras satisfying certain conditions introduced by Procesi and De Concini.
99 - Naihuan Jing , Ning Liu 2021
We use vertex operators to compute irreducible characters of the Iwahori-Hecke algebra of type $A$. Two general formulas are given for the irreducible characters in terms of those of the symmetric groups or the Iwahori-Hecke algebras in lower degrees. Explicit formulas are derived for the irreducible characters labeled by hooks and two-row partitions. Using duality, we also formulate a determinant type Murnaghan-Nakayama formula and give another proof of Rams combinatorial Murnaghan-Nakayama formula. As applications, we study super-characters of the Iwahori-Hecke algebra as well as the bitrace of the regular representation and provide a simple proof of the Halverson-Luduc-Ram formula.
276 - B. Feigin , E. Feigin , M. Jimbo 2010
We construct a family of irreducible representations of the quantum continuous $gl_infty$ whose characters coincide with the characters of representations in the minimal models of the $W_n$ algebras of $gl_n$ type. In particular, we obtain a simple combinatorial model for all representations of the $W_n$-algebras appearing in the minimal models in terms of $n$ interrelating partitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا