Do you want to publish a course? Click here

The luminosities of backsplash galaxies in constrained simulations of the Local Group

260   0   0.0 ( 0 )
 Added by Alexander Knebe
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the differences and similarities in the luminosities of bound, infalling and the so-called backsplash (Gill et al. 2005) galaxies of the Milky Way and M31 using a hydrodynamical simulation performed within the Constrained Local UniversE Simulation (CLUES) project. The simulation models the formation of the Local Group within a self-consistent cosmological framework. We find that even though backsplash galaxies passed through the virial radius of their host halo and hence may have lost a (significant) fraction of their mass, their stellar populations are hardly affected. This leaves us with comparable luminosity functions for infalling and backsplash galaxies and hence little hope to decipher their past (and different) formation and evolutionary histories by luminosity measurements alone. Nevertheless, due to the tidal stripping of dark matter we find that the mass-to-light ratios have changed when comparing the various populations against each other: they are highest for the infalling galaxies and lowest for the bound satellites with the backsplash galaxies in-between.



rate research

Read More

Near field cosmology is practiced by studying the Local Group (LG) and its neighbourhood. The present paper describes a framework for simulating the near field on the computer. Assuming the LCDM model as a prior and applying the Bayesian tools of the Wiener filter (WF) and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the LCDM scenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of halos must obey specific isolation, mass and separation criteria. At the second level the orbital angular momentum and energy are constrained and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG factory enables the construction of a large ensemble of simulated LGs. Suitable candidates for high resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduce the main dynamical features of the matter distribution down to the scale of a few Mpc around the LG. Additionally, we use the results of an unconstrained simulation with a sixty times larger volume to calibrate the influence of cosmic variance. We characterize the Mass Aggregation History (MAH) for each halo by three characteristic times, the formation, assembly and last major merger times. A major merger is defined by a minimal mass ratio of 10:1. We find that the three LGs share a similar MAH with formation and last major merger epochs placed on average approx 10 - 12 Gyr ago. Between 12% and 17% of the halos in the mass range 5 x 10^11 Msol/h < M_h < 5 x 10^12 Msol/h have a similar MAH. In a set of pairs of halos within the same mass range, a fraction of 1% to 3% share similar formation properties as both halos in the simulated LG. An unsolved question posed by our results is the dynamical origin of the MAH of the LGs. The isolation criteria commonly used to define LG-like halos in unconstrained simulations do not narrow down the halo population into a set with quiet MAHs, nor does a further constraint to reside in a low density environment. The quiet MAH of the LGs provides a favorable environment for the formation of disk galaxies like the Milky Way and M31. The timing for the beginning of the last major merger in the Milky Way dark matter halo matches with the gas rich merger origin for the thick component in the galactic disk. Our results support the view that the specific large and mid scale environment around the Local Group play a critical role in shaping its MAH and hence its baryonic structure at present.
In the outer regions of a galaxy cluster, galaxies may be either falling into the cluster for the first time, or have already passed through the cluster centre at some point in their past. To investigate these two distinct populations, we utilise TheThreeHundred project, a suite of 324 hydrodynamical resimulations of galaxy clusters. In particular, we study the backsplash population of galaxies; those that have passed within $R_{200}$ of the cluster centre at some time in their history, but are now outside of this radius. We find that, on average, over half of all galaxies between $R_{200}$ and $2R_{200}$ from their host at $z=0$ are backsplash galaxies, but that this fraction is dependent on the dynamical state of a cluster, as dynamically relaxed clusters have a greater backsplash fraction. We also find that this population is mostly developed at recent times ($zleq0.4$), and is dependent on the recent history of a cluster. Finally, we show that the dynamical state of a given cluster, and thus the fraction of backsplash galaxies in its outskirts, can be predicted based on observational properties of the cluster.
309 - Ilian T. Iliev 2010
We present the first detailed structure formation and radiative transfer simulations of the reionization history of our cosmic neighbourhood. To this end, we follow the formation of the Local Group of galaxies and nearby clusters by means of constrained simulations, which use the available observational constraints to construct a representation of those structures which reproduces their actual positions and properties at the present time. We find that the reionization history of the Local Group is strongly dependent on the assumed photon production efficiencies of the ionizing sources, which are still poorly constrained. If sources are relatively efficient, i.e. the process is photon-rich, the Local Group is primarily ionized externally by the nearby clusters. Alternatively, if the sources are inefficient, i.e. reionization is photon-poor the Local Group evolves largely isolated and reionizes itself. The mode of reionization, external vs. internal, has important implications for the evolution of our neighbourhood, in terms of e.g. its satellite galaxy populations and primordial stellar populations. This therefore provides an important avenue for understanding the young universe by detailed studies of our nearby structures.
156 - Stefan Gottloeber 2010
The local universe is the best known part of our universe. Within the CLUES project (http://clues-project.org - Constrained Local UniversE Simulations) we perform numerical simulations of the evolution of the local universe. For these simulations we construct initial conditions based on observational data of the galaxy distribution in the local universe. Here we review the technique of these constrained simulations. In the second part we summarize our predictions of a possible Warm Dark Matter cosmology for the observed local distribution of galaxies and the local spectrum of mini-voids as well as a study of the satellite dynamics in a simulated Local Group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا