Do you want to publish a course? Click here

Reionization of the Local Group of Galaxies

324   0   0.0 ( 0 )
 Added by Ilian Iliev
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first detailed structure formation and radiative transfer simulations of the reionization history of our cosmic neighbourhood. To this end, we follow the formation of the Local Group of galaxies and nearby clusters by means of constrained simulations, which use the available observational constraints to construct a representation of those structures which reproduces their actual positions and properties at the present time. We find that the reionization history of the Local Group is strongly dependent on the assumed photon production efficiencies of the ionizing sources, which are still poorly constrained. If sources are relatively efficient, i.e. the process is photon-rich, the Local Group is primarily ionized externally by the nearby clusters. Alternatively, if the sources are inefficient, i.e. reionization is photon-poor the Local Group evolves largely isolated and reionizes itself. The mode of reionization, external vs. internal, has important implications for the evolution of our neighbourhood, in terms of e.g. its satellite galaxy populations and primordial stellar populations. This therefore provides an important avenue for understanding the young universe by detailed studies of our nearby structures.



rate research

Read More

The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The PAndAS collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disk of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by PAndAS, an adjacent slightly tilted plane, and two planes near the Milky Way: one with nearer galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. For M31, M33, IC10, and LeoI, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction toward the Milky Way, and the result has been alignments stretched toward our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Ways attraction toward the Virgo Cluster resulted in alignments along the Milky Way-Virgo Cluster line.
Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; ${rm M}_{rm V}$ $sim -2$ or ${rm M}_{star}$ $sim 10^{2}$ at $z=0$) had ultra-violet (UV) luminosities of ${rm M}_{rm UV}$ $sim -3$ to $-6$ during reionization ($zsim6-10$). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep ($alphalesssim-2$) to ${rm M}_{rm UV}$ $sim -3$, then: (i) the ancestors of UFDs produced $>50$% of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are $>$2 times lower than currently-adopted values; (iii) direct HST and JWST observations may detect only $sim10-50$% of the UV light from galaxies; (iv) the cosmic star formation history increases by $gtrsim4-6$ at $zgtrsim6$. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, are reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to ${rm M}_{rm UV}$ $sim -3$ during reionization.
Photoheating associated with reionization suppressed star formation in low-mass galaxies. Reionization was inhomogeneous, however, affecting different regions at different times. To establish the causal connection between reionization and suppression, we must take this local variation into account. We analyze the results of CoDa (`Cosmic Dawn) I, the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all atomic-cooling galactic halos in that volume. For every halo identified at a given time, we find the redshift at which the surrounding IGM reionized, along with its instantaneous star formation rate (`SFR) and baryonic gas-to-dark matter ratio ($M_text{gas}/M_text{DM}$). The average SFR per halo with $M < 10^9 text{ M}_odot$ was steady in regions not yet reionized, but declined sharply following local reionization. For $M > 10^{10} text{ M}_odot$, this SFR continued through local reionization, increasing with time, instead. For $10^9 < M < 10^{10} text{ M}_odot$, the SFR generally increased modestly through reionization, followed by a modest decline. In general, halo SFRs were higher for regions that reionized earlier. A similar pattern was found for $M_text{gas}/M_text{DM}$, which declined sharply following local reionization for $M < 10^9 text{ M}_odot$. Local reionization time correlates with local matter overdensity, which determines the local rates of structure formation and ionizing photon consumption. The earliest patches to develop structure and reionize ultimately produced more stars than they needed to finish and maintain their own reionization, exporting their `surplus starlight to help reionize regions that developed structure later.
We contend that a single power law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low mass galaxies. Errors in halo masses are well defined as the Poisson noise of simulated local group realisations, which we determine using constrained local universe simulations (CLUES). For the stellar mass range 10$^7$<M*<10$^8$M$_odot$, for which we likely have a complete census of observed galaxies, we find that the stellar mass-halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. The steep relation between stellar and halo masses indicates that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to halo mass relation will decrease dramatically if the Local Group completeness limit was $10^{6.5}$M$odot$ or below, highlighting the importance of pushing such limit to lower masses and larger volumes.
We examine the reionization history of present-day galaxies by explicitly tracing the building blocks of halos from the Cosmic Reionization On Computers project. We track dark matter particles that belong to $z=0$ halos to trace the neutral fractions at corresponding positions during rapid global reionization. The resulting particle reionization histories allow us to explore different definitions of a halos reionization redshift and to account for the neutral content of the interstellar medium. Consistent with previous work, we find a systematic trend of reionization redshift with mass - present day halos with higher masses have earlier reionization times. Finally, we quantify the spread of reionization times within each halo, which also has a mass dependence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا