No Arabic abstract
A rotating black hole causes the spin-axis of a nearby pulsar to precess due to geodetic and gravitomagnetic frame-dragging effects. The aim of our theoretical work here is to explore how this spin-precession can modify the rate at which pulses are received on earth. Towards this end, we obtain the complete evolution of the beam vectors of pulsars moving on equatorial circular orbits in the Kerr spacetime, relative to asymptotic fixed observers. We proceed to establish that such spin-precession effects can significantly modify observed pulse frequencies and, in specific, we find that the observed pulse frequency rises sharply as the orbit shrinks, potentially providing a new way to locate horizons of Kerr black holes, even if observed for a very short time period. We also discuss implications for detections of sub-millisecond pulsars, pulsar nulling, quasi-periodic oscillations, multiply-peaked pulsar Fourier profiles and how Kerr black holes can potentially be distinguished from naked singularities.
We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO) of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its orbital radius, the escape probability of a photon emitted from it decreases monotonically. The escape probability evaluated at the ISCO also decreases monotonically as the black hole spin increases. When the dimensionless Kerr parameter $a$ is at the Thorne limit $a=0.998$, the escape probability from the ISCO is $58.8%$. In the extremal case $a=1$, even if the orbital radius of the light source is arbitrarily close to the ISCO radius, which coincides with the horizon radius, the escape probability remains at $54.6%$. We also show that such photons that have escaped from the vicinity of the horizon reach infinity with sufficient energy to be potentially observed because Doppler blueshift due to relativistic beaming can overcome the gravitational redshift. Our findings indicate that signs of the near-horizon physics of a rapidly rotating black hole will be detectable on the edge of its shadow.
We present a new upper limit on the energy that may be extracted from a Kerr black hole by means of particle collisions in the ergosphere (i.e., the collisional Penrose process). Earlier work on this subject has focused largely on particles with critical values of angular momentum falling into an extremal Kerr black hole from infinity and colliding just outside the horizon. While these collisions are able to reach arbitrarily high center-of-mass energies, it is very difficult for the reaction products to escape back to infinity, effectively limiting the peak efficiency of such a process to roughly $130%$. When we allow one of the initial particles to have impact parameter $b > 2M$, and thus not get captured by the horizon, it is able to collide along outgoing trajectories, greatly increasing the chance that the products can escape. For equal-mass particles annihilating to photons, we find a greatly increased peak energy of $E_{rm out} approx 6times E_{rm in}$. For Compton scattering, the efficiency can go even higher, with $E_{rm out} approx 14times E_{rm in}$, and for repeated scattering events, photons can both be produced {it and} escape to infinity with Planck-scale energies.
We discuss the observable effects of enhanced black-hole mass loss in a black hole--neutron star (BH--NS) binary, due to the presence of a warped extra spatial dimension of curvature radius $L$ in the braneworld scenario. For some masses and orbital parameters in the expected ranges the binary components would outspiral, the opposite of the behavior due to energy loss from gravitational radiation alone. If the NS is a pulsar, observations of the rate of change of the orbital period with a precision obtained for the Binary Pulsar B1913+16 could easily detect the effect of mass loss. For $M_{BH}=7M_odot$, $M_{NS}=1.4M_odot$, eccentricity $e=0.1$, and $L=10mu$m, the critical orbital period dividing systems which inspiral from systems which outspiral is P$approx$6.5 hours, which is within the range of expected orbital periods; this value drops to P$approx$4.2 hours for $M_{BH}=5M_odot$. Observations of a BH--pulsar system could set considerably better limits on $L$ in these braneworld models than could be determined by torsion-balance gravity experiments in the foreseeable future.
Very-long baseline interferometric observations have resolved structure on scales of only a few Schwarzschild radii around the supermassive black holes at the centers of our Galaxy and M87. In the near future, such observations are expected to image the shadows of these black holes together with a bright and narrow ring surrounding their shadows. For a Kerr black hole, the shape of this photon ring is nearly circular unless the black hole spins very rapidly. Whether or not, however, astrophysical black holes are truly described by the Kerr metric as encapsulated in the no-hair theorem still remains an untested assumption. For black holes that differ from Kerr black holes, photon rings have been shown numerically to be asymmetric for small to intermediate spins. In this paper, I calculate semi-analytic expressions of the shapes of photon rings around black holes described by a new Kerr-like metric which is valid for all spins. I show that photon rings in this spacetime are affected by two types of deviations from the Kerr metric which can cause the ring shape to be highly asymmetric. I argue that the ring asymmetry is a direct measure of a potential violation of the no-hair theorem and that both types of deviations can be detected independently if the mass and distance of the black hole are known. In addition, I obtain approximate expressions of the diameters, displacements, and asymmetries of photon rings around Kerr and Kerr-like black holes.
Collisions of particles in black holes ergospheres may result in an arbitrarily large center of mass energy. This led recently to the suggestion (Banados et al., 2009) that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles the energy excess must come from the rotational energy of the black hole and hence this must involve a Penrose process. However, while the center of mass energy diverges the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes (Piran & Shaham 1977) we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one shouldnt expect collisions around a black hole to act as spectacular cosmic accelerators.