Do you want to publish a course? Click here

Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disc and the halo

56   0   0.0 ( 0 )
 Added by Maria Bergemann
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (LTE, 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature, and, in particular, for LTE vs. non-LTE (NLTE) on metallicity of the stars. Here we analyse the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged <3D> models. We show that compared to the <3D>NLTE benchmark, all other three methods display increasing biases towards lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best <3D> NLTE model, the halo and disc stars show a clearer behaviour in the [Mg/Fe] - [Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disc stars and this population extends down to at least [Fe/H] ~ -1.6 dex, further than previously proven. The thick disc stars display a constant [Mg/Fe] ~ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disc formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.

rate research

Read More

In this work we have used 3D hydrodynamical (CO5BOLD) and 1D hydrostatic (LHD) stellar atmosphere models to study the importance of convection and horizontal temperature inhomogeneities in stellar abundance work related to late-type giants. We have found that for a number of key elements, such as Na, Mg, Si, Ca, Ti, Fe, Ni, Zn, Ba, Eu, differences in abundances predicted by 3D and 1D models are typically minor (< 0.1 dex) at solar metallicity. However, at [M/H] = -3 they become larger and reach to -0.5...-0.8 dex. In case of neutral atoms and fixed metallicity, the largest abundance differences were obtained for the spectral lines with lowest excitation potential, while for ionized species the largest 3D-1D abundance differences were found for lines of highest excitation potential. The large abundance differences at low metallicity are caused by large horizontal temperature fluctuations and lower mean temperature in the outer layers of the 3D hydrodynamical model compared with its 1D counterpart.
Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the revised Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 microarcsecond. This parallax data has been combined with HST ACS photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02 to 0.03 magnitudes. Six of these stars are on the main sequence (with -2.7 < [Fe/H] < -1.8), and suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters. Using the abundances obtained by OMalley et al. (2017) we find that standard stellar models using the Vandenberg & Clem (2003) color transformation do a reasonable job of matching five of the main sequence stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones which fit the parallax stars were used to determine the distances and ages of nine globular clusters (with -2.4 <= [Fe/H] <= -1.9$). Averaging together the age of all nine clusters, leads to an absolute age of the oldest, most metal-poor globular clusters of 12.7+/- 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.
We find two chemically distinct populations separated relatively cleanly in the [Fe/H] - [Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe/H] $< -0.9$) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the $alpha$-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote the HMg population) exhibits a significant net Galactic rotation, whereas the low-Mg population (or LMg population) has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely as an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with $it in$ $it situ$ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low- and high-$alpha$ halo stars found in previous studies, suggesting that these are samples of the same two populations.
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
Chemistry and kinematic studies can determine the origins of stellar population across the Milky Way. The metallicity distribution function of the bulge indicates that it comprises multiple populations, the more metal-poor end of which is particularly poorly understood. It is currently unknown if metal-poor bulge stars ([Fe/H] $<$ -1 dex) are part of the stellar halo in the inner most region, or a distinct bulge population or a combination of these. Cosmological simulations also indicate that the metal-poor bulge stars may be the oldest stars in the Galaxy. In this study, we successfully target metal-poor bulge stars selected using SkyMapper photometry. We determine the stellar parameters of 26 stars and their elemental abundances for 22 elements using R$sim$ 47,000 VLT/UVES spectra and contrast their elemental properties with that of other Galactic stellar populations. We find that the elemental abundances we derive for our metal-poor bulge stars have much lower overall scatter than typically found in the halo. This indicates that these stars may be a distinct population confined to the bulge. If these stars are, alternatively, part of the inner-most distribution of the halo, this indicates that the halo is more chemically homogeneous at small Galactic radii than at large radii. We also find two stars whose chemistry is consistent with second-generation globular cluster stars. This paper is the first part of the Chemical Origins of Metal-poor Bulge Stars (COMBS) survey that will chemo-dynamically characterize the metal-poor bulge population.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا