No Arabic abstract
We analyse the coarse-grained phase-space structure of the six Galaxy-scale dark matter haloes of the Aquarius Project using a state-of-the-art 6D substructure finder. Within r_50, we find that about 35% of the mass is in identifiable substructures, predominantly tidal streams, but including about 14% in self-bound subhaloes. The slope of the differential substructure mass function is close to -2, which should be compared to around -1.9 for the population of self-bound subhaloes. Near r_50 about 60% of the mass is in substructures, with about 30% in self-bound subhaloes. The inner 35 kpc of the highest resolution simulation has only 0.5% of its mass in self-bound subhaloes, but 3.3% in detected substructure, again primarily tidal streams. The densest tidal streams near the solar position have a 3-D mass density about 1% of the local mean, and populate the high velocity tail of the velocity distribution.
We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.
Cosmological simulations predict that galaxies are embedded into triaxial dark matter haloes, which appear approximately elliptical in projection. Weak gravitational lensing allows us to constrain these halo shapes and thereby test the nature of dark matter. Weak lensing has already provided robust detections of the signature of halo flattening at the mass scales of groups and clusters, whereas results for galaxies have been somewhat inconclusive. Here we combine data from five surveys (NGVSLenS, KiDS/KV450, CFHTLenS, CS82, and RCSLenS) in order to tighten observational constraints on galaxy-scale halo ellipticity for photometrically selected lens samples. We constrain $f_rm{h}$, the average ratio between the aligned component of the halo ellipticity and the ellipticity of the light distribution, finding $f_rm{h}=0.303^{+0.080}_{-0.079}$ for red lenses and $f_rm{h}=0.217^{+0.160}_{-0.159}$ for blue lenses when assuming elliptical NFW density profiles and a linear scaling between halo ellipticity and galaxy ellipticity. Our constraints for red galaxies constitute the currently most significant ($3.8sigma$) systematics-corrected detection of the signature of halo flattening at the mass scale of galaxies. Our results are in good agreement with expectations from the Millennium Simulation that apply the same analysis scheme and incorporate models for galaxy-halo misalignment. Assuming these misalignment models and the analysis assumptions stated above are correct, our measurements imply an average dark matter halo ellipticity for the studied red galaxy samples of $langle|epsilon_rm{h}|rangle=0.174pm 0.046$, where $|epsilon_{h}|=(1-q)/(1+q)$ relates to the ratio $q=b/a$ of the minor and major axes of the projected mass distribution. Similar measurements based on larger upcoming weak lensing data sets can help to calibrate models for intrinsic galaxy alignments. [abridged]
The development of methods and algorithms to solve the $N$-body problem for classical, collisionless, non-relativistic particles has made it possible to follow the growth and evolution of cosmic dark matter structures over most of the Universes history. In the best studied case $-$ the cold dark matter or CDM model $-$ the dark matter is assumed to consist of elementary particles that had negligible thermal velocities at early times. Progress over the past three decades has led to a nearly complete description of the assembly, structure and spatial distribution of dark matter haloes, and their substructure in this model, over almost the entire mass range of astronomical objects. On scales of galaxies and above, predictions from this standard CDM model have been shown to provide a remarkably good match to a wide variety of astronomical data over a large range of epochs, from the temperature structure of the cosmic background radiation to the large-scale distribution of galaxies. The frontier in this field has shifted to the relatively unexplored subgalactic scales, the domain of the central regions of massive haloes, and that of low-mass haloes and subhaloes, where potentially fundamental questions remain. Answering them may require: (i) the effect of known but uncertain baryonic processes (involving gas and stars), and/or (ii) alternative models with new dark matter physics. Here we present a review of the field, focusing on our current understanding of dark matter structure from $N$-body simulations and on the challenges ahead.
We study the properties of dark matter haloes in a wide range of modified gravity models, namely, $f(R)$, DGP, and interacting dark energy models. We study the effects of modified gravity and dark energy on the internal properties of haloes, such as the spin and the structural parameters. We find that $f(R)$ gravity enhance the median value of the Bullock spin parameter, but could not detect such effects for DGP and coupled dark energy. $f(R)$ also yields a lower median sphericity and oblateness, while coupled dark energy has the opposite effect. However, these effects are very small. We then study the interaction rate of haloes in different gravity, and find that only strongly coupled dark energy models enhance the interaction rate. We then quantify the enhancement of the alignment of the spins of interacting halo pairs by modified gravity. Finally, we study the alignment of the major axes of haloes with the large-scale structures. The alignment of the spins of interacting pairs of haloes in DGP and coupled dark energy models show no discrepancy with GR, while $f(R)$ shows a weaker alignment. Strongly coupled dark energy shows a stronger alignment of the halo shape with the large-scale structures.
Current theories of structure formation predict specific density profiles of galaxy dark matter haloes, and with weak gravitational lensing we can probe these profiles on several scales. On small scales, higher-order shape distortions known as flexion add significant detail to the weak lensing measurements. We present here the first detection of a galaxy-galaxy flexion signal in space-based data, obtained using a new Shapelets pipeline introduced here. We combine this higher-order lensing signal with shear to constrain the average density profile of the galaxy lenses in the Hubble Space Telescope COSMOS survey. We also show that light from nearby bright objects can significantly affect flexion measurements. After correcting for the influence of lens light, we show that the inclusion of flexion provides tighter constraints on density profiles than does shear alone. Finally we find an average density profile consistent with an isothermal sphere.