Do you want to publish a course? Click here

Unbound Particles in Dark Matter Halos

268   0   0.0 ( 0 )
 Added by Peter Behroozi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.



rate research

Read More

We analyse the coarse-grained phase-space structure of the six Galaxy-scale dark matter haloes of the Aquarius Project using a state-of-the-art 6D substructure finder. Within r_50, we find that about 35% of the mass is in identifiable substructures, predominantly tidal streams, but including about 14% in self-bound subhaloes. The slope of the differential substructure mass function is close to -2, which should be compared to around -1.9 for the population of self-bound subhaloes. Near r_50 about 60% of the mass is in substructures, with about 30% in self-bound subhaloes. The inner 35 kpc of the highest resolution simulation has only 0.5% of its mass in self-bound subhaloes, but 3.3% in detected substructure, again primarily tidal streams. The densest tidal streams near the solar position have a 3-D mass density about 1% of the local mean, and populate the high velocity tail of the velocity distribution.
270 - C. Alard 2012
This papers explores the self similar solutions of the Vlasov-Poisson system and their relation to the gravitational collapse of dynamically cold systems. Analytic solutions are derived for power law potential in one dimension, and extensions of these solutions in three dimensions are proposed. Next the self similarity of the collapse of cold dynamical systems is investigated numerically. The fold system in phase space is consistent with analytic self similar solutions, the solutions present all the proper self-similar scalings. An additional point is the appearance of an $x^{-(1/2)}$ law at the center of the system for initial conditions with power law index larger than $-(1/2)$. It is found that the first appearance of the $x^{-(1/2)}$ law corresponds to the formation of a singularity very close to the center. Finally the general properties of self similar multi dimensional solutions near equilibrium are investigated. Smooth and continuous self similar solutions have power law behavior at equilibrium. However cold initial conditions result in discontinuous phase space solutions, and the smoothed phase space density looses its auto similar properties. This problem is easily solved by observing that the probability distribution of the phase space density $P$ is identical except for scaling parameters to the probability distribution of the smoothed phase space density $P_S$. As a consequence $P_S$ inherit the self similar properties of $P$. This particular property is at the origin of the universal power law observed in numerical simulation for ${rho}/{sigma^3}$. The self similar properties of $P_S$ implies that other quantities should have also an universal power law behavior with predictable exponents. This hypothesis is tested using a numerical model of the phase space density of cold dark matter halos, an excellent agreement is obtained.
We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock type for the spherically symmetrical wave function of the DMH component. This equation includes two independent dimensionless parameters: (i) b{eta}- the ratio of baryon and axion total mases and (ii) {xi}- the ratio of characteristic baryon and axion spatial parameters. We extended our dissipation algorithm for studying numerically the ground state of the axion halo in the gravitational field produced by the baryonic component. We calculated the characteristic size, Xc, of DMH as a function of b{eta} and {xi} and obtained an analytical approximation for Xc.
We argue that primordial dark matter halos could be generated during radiation domination by long range attractive forces stronger than gravity. In this paper we derive the conditions under which these structures could dominate the dark matter content of the Universe while passing microlensing constraints and cosmic microwave background energy injection bounds. The dark matter particles would be clumped in objects in the solar mass range with typical sizes of the order of the solar system. Consequences for direct dark matter searches are important.
Dissipative dark matter self-interactions can affect halo evolution and change its structure. We perform a series of controlled N-body simulations to study impacts of the dissipative interactions on halo properties. The interplay between gravitational contraction and collisional dissipation can significantly speed up the onset of gravothermal collapse, resulting in a steep inner density profile. For reasonable choices of model parameters controlling the dissipation, the collapse timescale can be a factor of 10-100 shorter than that predicted in purely elastic self-interacting dark matter. The effect is maximized when energy loss per collision is comparable to characteristic kinetic energy of dark matter particles in the halo. Our simulations provide guidance for testing the dissipative nature of dark matter with astrophysical observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا