Do you want to publish a course? Click here

Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors

176   0   0.0 ( 0 )
 Added by Stefan Danilishin
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a negative inertia, which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass Standard Quantum Limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancelation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise cancelation schemes. We show that it is feasible to demonstrate such an effect with the {it Gingin High Optical Power Test Facility}, and it can eventually be implemented in future advanced GW detectors.



rate research

Read More

Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.
135 - Xiao-Yu Lu , Yu-Jie Tan , 2020
Time-delay interferometry is put forward to improve the signal-to-noise ratio of space-borne gravitational wave detectors by canceling the large laser phase noise with different combinations of measured data. Based on the Michelson data combination, the sensitivity function of the detector can be obtained by averaging the all-sky wave source positions. At present, there are two main methods to encode gravitational wave signal into detector. One is to adapt gravitational wave polarization angle depending on the arm orientation in the gravitational wave frame, and the other is to divide the gravitational wave signal into plus and cross polarizations in the detector frame. Although there are some attempts using the first method to provide the analytical expression of sensitivity function, only a semianalytical one could be obtained. Here, starting with the second method, we demonstrate the equivalence of both methods. First time to obtain the full analytical expression of sensitivity function, which provides a fast and accurate mean to evaluate and compare the performance of different space-borne detectors, such as LISA and TianQin.
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article: Quantum measurement theory in gravitational-wave detectors [Living Rev. Relativity 15, 5 (2012)], we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.
Identifying the presence of a gravitational wave transient buried in non-stationary, non-Gaussian noise which can often contain spurious noise transients (glitches) is a very challenging task. For a given data set, transient gravitational wave searches produce a corresponding list of triggers that indicate the possible presence of a gravitational wave signal. These triggers are often the result of glitches mimicking gravitational wave signal characteristics. To distinguish glitches from genuine gravitational wave signals, search algorithms estimate a range of trigger attributes, with thresholds applied to these trigger properties to separate signal from noise. Here, we present the use of Gaussian mixture models, a supervised machine learning approach, as a means of modelling the multi-dimensional trigger attribute space. We demonstrate this approach by applying it to triggers from the coherent Waveburst search for generic bursts in LIGO O1 data. By building Gaussian mixture models for the signal and background noise attribute spaces, we show that we can significantly improve the sensitivity of the coherent Waveburst search and strongly suppress the impact of glitches and background noise, without the use of multiple search bins as employed by the original O1 search. We show that the detection probability is enhanced by a factor of 10, leading enhanced statistical significance for gravitational wave signals such as GW150914.
Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling (SR) technique. Candidate Advanced LIGO configurations are usually designed to have two resonances within the detection band, around which the sensitivity is enhanced: a stable optical resonance and an unstable optomechanical resonance - which is upshifted from the pendulum frequency due to the so-called optical-spring effect. Alternative to a feedback control system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose detunings have opposite signs. The double optical spring also brings additional flexibility in re-shaping the noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme can be extended easily to a multi-optical-spring system that allows further optimization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا