Do you want to publish a course? Click here

Sensitivity functions for space-borne gravitational wave detectors

136   0   0.0 ( 0 )
 Added by Yujie Tan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-delay interferometry is put forward to improve the signal-to-noise ratio of space-borne gravitational wave detectors by canceling the large laser phase noise with different combinations of measured data. Based on the Michelson data combination, the sensitivity function of the detector can be obtained by averaging the all-sky wave source positions. At present, there are two main methods to encode gravitational wave signal into detector. One is to adapt gravitational wave polarization angle depending on the arm orientation in the gravitational wave frame, and the other is to divide the gravitational wave signal into plus and cross polarizations in the detector frame. Although there are some attempts using the first method to provide the analytical expression of sensitivity function, only a semianalytical one could be obtained. Here, starting with the second method, we demonstrate the equivalence of both methods. First time to obtain the full analytical expression of sensitivity function, which provides a fast and accurate mean to evaluate and compare the performance of different space-borne detectors, such as LISA and TianQin.



rate research

Read More

General Relativity predicts only two tensor polarization modes for gravitational waves while at most six possible polarization modes of gravitational waves are allowed in the general metric theory of gravity. The number of polarization modes is totally determined by the specific modified theory of gravity. Therefore, the determination of polarization modes can be used to test gravitational theory. We introduce a concrete data analysis pipeline for a single space-based detector such as LISA to detect the polarization modes of gravitational waves. Apart from being able to detect mixtures of tensor and extra polarization modes, this method also has the added advantage that no waveform model is needed and monochromatic gravitational waves emitted from any compact binary system with known sky position and frequency can be used. We apply the data analysis pipeline to the reference source J0806.3+1527 of TianQin with 90-days simulation data, and we show that $alpha$ viewed as an indicative of the intrinsic strength of the extra polarization component relative to the tensor modes can be limited below 0.5 for LISA and below 0.2 for Taiji. We investigate the possibility to detect the nontensorial polarization modes with the combined network of LISA, TianQin and Taiji and find that $alpha$ can be limited below 0.2.
The basic constituent of many space-borne gravitational missions, in particular for interferometric gravitational waves detectors, is the so-called link made out of a satellite sending an electromagnetic beam to a second satellite. We illustrate how, by measuring the time derivative of the frequency of the received beam, the link behaves as a differential, time-delayed dynamometer in which the effect of gravity is exactly equivalent to an effective differential force applied to the two satellites. We also show that this differential force gives an integrated measurement of curvature along the beam. Finally, we discuss how this approach can be implemented to benefit the data analysis of gravitational wave detectors.
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a negative inertia, which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass Standard Quantum Limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancelation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise cancelation schemes. We show that it is feasible to demonstrate such an effect with the {it Gingin High Optical Power Test Facility}, and it can eventually be implemented in future advanced GW detectors.
Employing the Fisher information matrix analysis, we estimate parameter errors of TianQin and LISA for monochromatic gravitational waves. With the long-wavelength approximation we derive analytical formulas for the parameter estimation errors. We separately analyze the effects of the amplitude modulation due to the changing orientation of the detector plane and the Doppler modulation due to the translational motion of the center of the detector around the Sun. We disclose that in the low frequency regime there exist different patterns in angular resolutions and estimation errors of sources parameters between LISA and TianQin, the angular resolution falls off as $S_n(f)/f^2$ for TianQin but $S_n(f)$ for LISA, and the estimation errors of the other parameters fall off as $sqrt{S_n(f)}/f$ for TianQin but $sqrt{S_n(f)}$ for LISA. In the medium frequency regime we observe the same pattern where the angular resolution falls off as $S_n(f)/f^2$ and the estimation errors of the other parameters fall off as $sqrt{S_n(f)}$ for both TianQin and LISA. In the high frequency regime, the long-wavelength approximation fails, we numerically calculate the parameter estimation errors for LISA and TianQin and find that the parameter estimation errors measured by TianQin are smaller than those by LISA.
(abridged) The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geometry: in effect, we derive error bars for the sky-averaged sensitivity curve, which provide a stringent statistical interpretation for previously unqualified statements about sky-averaged SNRs. As a worked-out example, we consider isotropic and Galactic-disk populations of monochromatic sources, as observed with the classic LISA configuration. We confirm that the (standard) inverse-rms average sensitivity for the isotropic population remains the same whether or not the LISA orbits are included in the computation. However, detector motion tightens the distribution of sensitivities, so for 50% of sources the sensitivity is within 30% of its average. For the Galactic-disk population, the average and the distribution of the sensitivity for a moving detector turn out to be similar to the isotropic case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا