Do you want to publish a course? Click here

On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

204   0   0.0 ( 0 )
 Added by Jon M. Miller
 Publication date 2010
  fields Physics
and research's language is English
 Authors J. M. Miller




Ask ChatGPT about the research

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon pile-up, wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.



rate research

Read More

In a previous paper, we presented an extension of our reflection model RELXILL_NK to include the finite thickness of the accretion disk following the prescription in Taylor & Reynolds (2018). In this paper, we apply our model to fit the 2013 simultaneous observations by NuSTAR and XMM-Newton of the supermassive black hole in MCG-06-30-15 and the 2019 NuSTAR observation of the Galactic black hole in EXO 1846-031. The high-quality data of these spectra had previously led to precise black hole spin measurements and very stringent constraints on possible deviations from the Kerr metric. We find that the disk thickness does not change previous spin results found with a model employing an infinitesimally thin disk, which confirms the robustness of spin measurements in high radiative efficiency disks, where the impact of disk thickness is minimal. Similar analysis on lower accretion rate systems will be an important test for measuring the effect of disk thickness on black hole spin measurements.
Einstein-Maxwell dilaton-axion gravity is a string-inspired model arising from the low energy effective action of heterotic string theory and an important candidate as alternative to General Relativity. Recently, some authors have explored its astrophysical implications in the spectra of accreting black holes and inferred the constraint $r_2 < 0.1$, where $r_2 ge 0$ is the black hole dilaton charge and General Relativity is recovered for $r_2 = 0$. In the present paper, we study the impact of a non-vanishing black hole dilaton charge on the reflection spectrum of the disk. From the analysis of a NuSTAR spectrum of the black hole binary EXO 1846-031, we find the constraint $r_2 < 0.011$ (90% CL), which is an order of magnitude more stringent.
Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency is typically in the range 3-5 kHz as determined by the central density of the star. In the best cases, LIGO may be sensitive to CDO masses greater than or of order $10^{-8}$ solar masses.
73 - Zhen Pan , Huan Yang 2021
Accretion disks of active galactic nuclei (AGN) have been proposed as promising sites for producing both (stellar-mass) compact object mergers and extreme mass ratio inspirals. Along with the disk-assisted migration/evolution process, ambient gas materials inevitably accrete onto the compact objects. The description of this process is subject to significant theoretical uncertainties in previous studies. It was commonly assumed that either an Eddington accretion rate or a Bondi accretion rate (or any rate in between) takes place, although these two rates can differ from each other by several orders of magnitude. As a result, the mass and spin evolution of compact objects within AGN disks are essentially unknown. In this work, we construct a relativistic supercritical inflow-outflow model for black hole (BH) accretion. We show that the radiation efficiency of the supercritical accretion of a stellar-mass BH (sBH) is generally too low to explain the proposed electromagnetic counterpart of GW190521. Applying this model to sBHs embedded in AGN disks, we find that, although the gas inflow rates at Bondi radii of these sBHs are in general highly super-Eddington, a large fraction of inflowing gas eventually escapes as outflows so that only a small fraction accretes onto the sBH, resulting in mildly super-Eddington BH absorption in most cases. We also implement this inflow-outflow model to study the evolution of neutron stars (NS) and white dwarfs (WD) in AGN disks, taking into account corrections from star sizes and star magnetic fields. It turns out to be difficult for WDs to grow to the Chandrasekhar limit via accretion because WDs are spun up more efficiently to reach the shedding limit before the Chandrasekhar limit. For NSs the accretion-induced collapse is possible if NS magnetic fields are sufficiently strong, keeping the NS in a slow rotation state during accretion.
We report on the spectroscopic analysis of the black hole binary GX 339-4 during its recent 2017-2018 outburst, observed simultaneously by the Swift and NuSTAR observatories. Although during this particular outburst the source failed to make state transitions, and despite Sun constraints during the peak luminosity, we were able to trigger four different observations sampling the evolution of the source in the hard state. We show that even for the lowest luminosity observations the NuSTAR spectra show clear signatures of X-ray reprocessing (reflection) in an accretion disk. Detailed analysis of the highest signal-to-noise spectra with our family of relativistic reflection models RELXILL indicates the presence of both broad and narrow reflection components. We find that a dual-lamppost model provides a superior fit when compared to the standard single lamppost plus distant neutral reflection. In the dual lamppost model two sources at different heights are placed on the rotational axis of the black hole, suggesting that the narrow component of the Fe K emission is likely to originate in regions far away in the disk, but still significantly affected by its rotational motions. Regardless of the geometry assumed, we find that the inner edge of the accretion disk reaches a few gravitational radii in all our fits, consistent with previous determinations at similar luminosity levels. This confirms a very low degree of disk truncation for this source at luminosities above ~1% Eddington. Our estimates of Rin reinforces the suggested behavior for an inner disk that approaches the inner-most regions as the luminosity increases in the hard state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا