No Arabic abstract
We show that a multilayer analysis of the infrared c-axis response of RBa2Cu3O7-d (R=Y, Gd, Eu) provides important new information about the anomalous normal state properties of underdoped cuprate high temperature superconductors. Besides competing correlations which give rise to a pseudogap that depletes the low-energy electronic states below T*>>Tc, it enables us to identify the onset of a precursor superconducting state below Tons>Tc. We map out the doping phase diagram of Tons which reaches a maximum of ~180 K at strong underdoping and present magnetic field dependent data which confirm our conclusions.
Using muon spin rotation and infrared spectroscopy we study the relation between magnetism and superconductivity in Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystals from the underdoped to the slightly overdoped regime. We find that the Fe magnetic moment is only moderately suppressed in most of the underdoped region where it decreases more slowly than the N{e}el-temperature, $ T^{mathrm{N}} $. This applies for both the total Fe moment obtained from muon spin rotation and for the itinerant component that is deduced from the spectral weight of the spin-density-wave pair breaking peak in the infrared response. In the moderately underdoped region, superconducting and static magnetic orders co-exist on the nano-scale and compete for the same electronic states. The static magnetic moment disappears rather sharply near optimal doping, however, in the slightly overdoped region there is still an enhancement or slowing down of spin fluctuations in the superconducting state. Similar to the gap magnitude reported from specific heat measurements, the superconducting condensate density is nearly constant in the optimally- and slightly overdoped region, but exhibits a rather pronounced decrease on the underdoped side. Several of these observations are similar to the phenomenology in the electron doped counterpart Ba(Fe$ _{1-y} $Co$ _{y} $)$ _{2} $As$ _{2} $.
Strontium ruthenates have many similarities with copper oxide superconductors and are of particular interest for the investigation of the mechanisms and conditions which lead to high-temperature superconductivity. We report here on multiple experimental indications of superconductivity with onset at 40 K in strontium ruthenate doped by rhenium and selenium with chlorine used as the flux. The main experimental evidence arises from terahertz spectroscopy of this material followed by AC and DC magnetization, as well as measurements of its heat capacity and magnetoresistance. Structural and morphological studies revealed the heterophase nature of this polycrystalline material as well as the changes of lattice parameters relative to the original phases. Experimental data show a higher critical temperature on the surface compared to that of the bulk of the sample.
Point-contact tunneling on CaC$_6$ crystals reproducibly reveals superconducting gaps, $Delta$, of 2.3$pm$0.2 meV which are $sim$~40% larger than earlier reports. That puts CaC$_6$ into the class of very strong-coupled superconductors since 2$Delta$/kT$_csim$~4.6. Thus soft Ca phonons will be primarily involved in the superconductivity, a conclusion that explains the large Ca isotope effect found recently for CaC$_6$. Consistency among superconductor-insulator-normal metal (SIN), SIS and Andreev reflection (SN) junctions reinforces the intrinsic nature of this result.
We performed optical spectroscopy measurement on a superconducting Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ single crystal with T$_c$=37 K. Formation of the superconducting energy gaps in the far-infared reflectance spectra below T$_c$ is clearly observed. The gap amplitudes match well with the two distinct superconducting gaps observed in angle-resolved photoemission spectroscopy experiments on different Fermi surfaces. We determined absolute value of the penetration depth at 10 K as $lambdasimeq2000 AA$. A spectral weight analysis shows that the Ferrell-Glover-Timkham sum rule is satisfied at low energy scale, less than 6$Delta$.
We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ ($T_c=38$ K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of $sim$14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pictnide superconductors, similar to that in high-$T_c$ copper oxide superconductors.