Do you want to publish a course? Click here

Evidence of a spin resonance mode in the iron-based superconductor Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ from scanning tunneling spectroscopy

249   0   0.0 ( 0 )
 Added by Lei Shan
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ ($T_c=38$ K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of $sim$14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pictnide superconductors, similar to that in high-$T_c$ copper oxide superconductors.



rate research

Read More

The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors. However, even for the most extensively studied optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$, there remain outstanding controversies on its electronic structure and superconducting gap structure. Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements on the optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ superconductor using both Helium lamp and laser light sources. Our results indicate the flat band feature observed around the Brillouin zone center in the superconducting state originates from the combined effect of the superconductivity-induced band back-bending and the folding of a band from the zone corner to the center. We found direct evidence of the band folding between the zone corner and the center in both the normal and superconducting state. Our resolution of the origin of the flat band makes it possible to assign the three hole-like bands around the zone center and determine their superconducting gap correctly. Around the zone corner, we observe a tiny electron-like band and an M-shaped band simultaneously in both the normal and superconducting states. The obtained gap size for the bands around the zone corner ($sim$5.5 meV) is significantly smaller than all the previous ARPES measurements. Our results establish a new superconducting gap structure around the zone corner and resolve a number of prominent controversies concerning the electronic structure and superconducting gap structure in the optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$. They provide new insights in examining and establishing theories in understanding superconductivity mechanism in iron-based superconductors.
184 - Jianwei Huang , Lin Zhao , Cong Li 2019
In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs (Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state. High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at T$_c$. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.
The optimally doped 122 iron-based superconductor Ba(0.6)K(0.4)Fe2As2 has been studied by 57Fe Moessbauer spectroscopy versus temperature ranging from 4.2 K till 300 K with particular attention paid to the superconducting transition around 38 K. The spectra do not contain magnetic components and they exhibit quasi-continuous distribution of quadrupole split doublets. A distribution follows the electric field gradient (EFG) spatial modulation (wave) - EFGW. The EFGW is accompanied by some charge density wave (CDW) having about an order of magnitude lesser influence on the spectrum. The EFGW could be modeled as widely separated narrow sheets with the EFG increasing from small till maximum value almost linearly and subsequently dropping back to the original value in a similar fashion - across the sheet. One encounters very small and almost constant EFG between sheets. The EFGW shape and amplitude as well as the amplitude of CDW are strongly affected by a superconducting transition. All modulations are damped significantly at transition (38 K) and recover at a temperature being about 14 K lower. The maximum quadrupole splitting at 4.2 K amounts to about 2.1 mm/s, while the dispersion of CDW seen on the iron nuclei could be estimated far away from the superconducting gap opening and at low temperature as 0.5 el./a.u.^3. It drops to about 0.3 el./a.u.^3 just below transition to the superconducting state.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate static magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
We report on band-dependent quasiparticle dynamics in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ ($T_c = 37 K$) measured using ultrafast pump-probe spectroscopy. In the superconducting state, we observe two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component with an excitation density independent decay rate. We argue that these two components reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا