We use the charged tip of a low temperature scanning probe microscope to perturb the transport through a graphene nanoconstriction. Maps of the conductance as a function of tip position display concentric halos, and by following the expansion of the halos with back-gate voltage we are able to identify an elongated domain over the nanoconstriction where they originate. Amplitude modulations of the transmission resonances are correlated with the gradient of the tip-induced potential and we analyze this in terms of modified coupling between localized states.
Image potential states (IPSs) are electronic states localized in front of a surface in a potential well formed by the surface projected bulk band gap on one side and the image potential barrier on the other. In the limit of a two-dimensional solid a double Rydberg series of IPSs has been predicted which is in contrast to a single series present in three-dimensional solids. Here, we confirm this prediction experimentally for mono- and bilayer graphene. The IPSs of epitaxial graphene on SiC are measured by scanning tunnelling spectroscopy and the results are compared to ab-initio band structure calculations. Despite the presence of the substrate, both calculations and experimental measurements show that the first pair of the double series of IPSs survives, and eventually evolves into a single series for graphite. Thus, IPSs provide an elegant quantum probe of the interfacial coupling in graphene systems.
We report magnetotransport properties of BaZnBi$_{2}$ single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with three dimensional (3D) but also with quasi two dimensional (2D) portions of the Fermi surface. The spin-orbit coupling-induced gap in Dirac states is much larger when compared to isostructural SrMnBi$_{2}$. This suggests that not only long range magnetic order but also mass of the alkaline earth atoms A in ABX$_{2}$ (A = alkaine earth, B = transition metal and X=Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface
Probing techniques with spatial resolution have the potential to lead to a better understanding of the microscopic physical processes and to novel routes for manipulating nanostructures. We present scanning-gate images of a graphene quantum dot which is coupled to source and drain via two constrictions. We image and locate conductance resonances of the quantum dot in the Coulomb-blockade regime as well as resonances of localized states in the constrictions in real space.
Photo-induced edge states in low dimensional materials have attracted considerable attention due to the tunability of topological properties and dispersion. Specifically, graphene nanoribbons have been predicted to host chiral edge modes upon irradiation with circularly polarized light. Here, we present numerical calculations of time-resolved angle resolved photoemission spectroscopy (trARPES) and time-resolved resonant inelastic x-ray scattering (trRIXS) of a graphene nanoribbon. We characterize pump-probe spectroscopic signatures of photo-induced edge states, illustrate the origin of distinct spectral features that arise from Floquet topological edge modes, and investigate the roles of incoming photon energies and finite core-hole lifetime in RIXS. With momentum, energy, and time resolution, pump-probe spectroscopies can play an important role in understanding the behavior of photo-induced topological states of matter.
Strain-inducing deformations in graphene alter charge distributions and provide a new method to design specific features in the band structure and transport properties. Novel approaches implement engineered substrates to induce specifically targeted strain profiles. Motivated by this technique, we study the evolution of charge distributions with an increasing number of out-of-plane deformations as an example of a finite size periodic substrate. We first analyze a system of two overlapping deformations and determine the quantitative relation between geometrical parameters and features in the local density of states. We extend the study to sets of 3 and 4 deformations in linear and two-dimensional arrays and observe the emergence of moire patterns that are more pronounced for a hexagonal cell composed of 7 deformations. A comparison between the induced strain profile and spatial maps of the local density of states at different energies provides evidence for the existence of states confined by the pseudo-magnetic field in bounded regions, reminiscent of quantum dots structures. Due to the presence of these states, the energy level scaling to be observed by local probes should exhibit a linear dependence with the pseudo-field, in contrast to the expected scaling of pseudo-Landau levels.
M. R. Connolly
,K. L. Chiu
,A. Lombardo
.
(2010)
.
"Tilted potential induced coupling of localized states in a graphene nanoconstriction"
.
Malcolm Connolly
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا