Do you want to publish a course? Click here

A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients

142   0   0.0 ( 0 )
 Added by Arne Alex
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well-suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).



rate research

Read More

Generating functions for Clebsch-Gordan coefficients of osp(1|2) are derived. These coefficients are expressed as q goes to - 1 limits of the dual q-Hahn polynomials. The generating functions are obtained using two different approaches respectively based on the coherent-state representation and the position representation of osp(1j2).
The Clebsch-Gordan coefficients of the group SU(2) are shown to satisfy new inequalities. They are obtained using the properties of Shannon and Tsallis entropies. The inequalities associated with the Wigner 3-j symbols are obtained using the relation of Clebsch-Gordan coefficients with probability distributions interpreted either as distributions for composite systems or distributions for noncomposite systems. The new inequalities were found for Hahn polynomials and hypergeometric functions
118 - Gaoli Chen 2017
We express each Clebsch-Gordan (CG) coefficient of a discrete group as a product of a CG coefficient of its subgroup and a factor, which we call an embedding factor. With an appropriate definition, such factors are fixed up to phase ambiguities. Particularly, they are invariant under basis transformations of irreducible representations of both the group and its subgroup. We then impose on the embedding factors constraints, which relate them to their counterparts under complex conjugate and therefore restrict the phases of embedding factors. In some cases, the phase ambiguities are reduced to sign ambiguities. We describe the procedure of obtaining embedding factors and then calculate CG coefficients of the group mathcal{PSL}_{2}left(7right) in terms of embedding factors of its subgroups S_{4} and mathcal{T}_{7}.
The trigonometric su(n) spin chain with anti-periodic boundary condition (su(n) spin torus) is demonstrated to be Yang-Baxter integrable. Based on some intrinsic properties of the R-matrix, certain operator product identities of the transfer matrix are derived. These identities and the asymptotic behavior of the transfer matrix together allow us to obtain the exact eigenvalues in terms of an inhomogeneous T-Q relation via the off-diagonal Bethe Ansatz.
We report in this article three- and four-term recursion relations for Clebsch-Gordan coefficients of the quantum algebras $U_q(su_2)$ and $U_q(su_{1,1})$. These relations were obtained by exploiting the complementarity of three quantum algebras in a $q$-deformation of $sp(8, gr)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا