Do you want to publish a course? Click here

The Fine-Scale Structure of the neutral Interstellar Medium in nearby Galaxies

142   0   0.0 ( 0 )
 Added by Ioannis Bagetakos
 Publication date 2010
  fields Physics
and research's language is English
 Authors I. Bagetakos




Ask ChatGPT about the research

We present an analysis of the properties of HI holes detected in 20 galaxies that are part of The HI Nearby Galaxy Survey (THINGS). We detected more than 1000 holes in total in the sampled galaxies. Where they can be measured, their sizes range from about 100 pc (our resolution limit) to about 2 kpc, their expansion velocities range from 4 to 36 km/s, and their ages are estimated to range between 3 and 150 Myr. The holes are found throughout the disks of the galaxies, out to the edge of the HI; 23% of the holes fall outside R25. We find that shear limits the age of holes in spirals (shear is less important in dwarf galaxies) which explains why HI holes in dwarfs are rounder, on average than in spirals. Shear, which is particularly strong in the inner part of spiral galaxies, also explains why we find that holes outside R25 are larger and older. We derive the scale height of the HI disk as a function of galactocentric radius and find that the disk flares up in all galaxies. We proceed to derive the surface and volume porosity (Q2D and Q3D) and find that this correlates with the type of the host galaxy: later Hubble types tend to be more porous. The size distribution of the holes in our sample follows a power law with a slope of a ~ -2.9. Assuming that the holes are the result of massive star formation, we derive values for the supernova rate (SNR) and star formation rate (SFR) which scales with the SFR derived based on other tracers. If we extrapolate the observed number of holes to include those that fall below our resolution limit, down to holes created by a single supernova, we find that our results are compatible with the hypothesis that HI holes result from star formation.



rate research

Read More

Two major questions in galaxy evolution are how star-formation on small scales leads to global scaling laws and how galaxies acquire sufficient gas to sustain their star formation rates. HI observations with high angular resolution and with sensitivity to very low column densities are some of the important observational ingredients that are currently still missing. Answers to these questions are necessary for a correct interpretation of observations of galaxy evolution in the high-redshift universe and will provide crucial input for the sub-grid physics in hydrodynamical simulations of galaxy evolutions. In this chapter we discuss the progress that will be made with the SKA using targeted observations of nearby individual disk and dwarf galaxies.
Dynamic and thermal processes regulate the structure of the multi-phase interstellar medium (ISM), and ultimately establish how galaxies evolve through star formation. Thus, to constrain ISM models and better understand the interplay of these processes, it is of great interest to measure the thermal pressure ($P_{rm th}$) of the diffuse, neutral gas. By combining [C II] 158 $mu$m, HI, and CO data from 31 galaxies selected from the Herschel KINGFISH sample, we have measured thermal pressures in 534 predominantly atomic regions with typical sizes of $sim$1 kiloparsec. We find a distribution of thermal pressures in the $P_{rm th}/ksim10^3-10^5$ K cm$^{-3}$ range. For a sub-sample of regions with conditions similar to those of the diffuse, neutral gas in the Galactic plane, we find thermal pressures that follow a log-normal distribution with a median value of $P_{rm th}/kapprox3600$ K cm$^{-3}$. These results are consistent with thermal pressure measurements using other observational methods. We find that $P_{rm th}$ increases with radiation field strength and star formation activity, as expected from the close link between the heating of the gas and the star formation rate. Our thermal pressure measurements fall in the regime where a two-phase ISM with cold and warm neutral medium could exist in pressure equilibrium. Finally, we find that the midplane thermal pressure of the diffuse gas is about $sim30$% of the vertical weight of the overlying ISM, consistent with results from hydrodynamical simulations of self-regulated star formation in galactic disks.
82 - A. Aloisi 2004
Thanks to their proximity, local starbursts are perfectly suited for high-resolution and sensitivity multiwavelength observations aimed to test our ideas about star formation, evolution of massive stars, physics and chemical evolution of the interstellar medium (ISM). High-resolution UV spectroscopy with FUSE and STIS has recently given the possibility to characterize in great detail the neutral ISM in local starbursts thanks to the presence in this spectral range of many absorption lines from ions of the most common heavy elements. Here we present the results for two nearby starburst galaxies, I Zw 18 and NGC 1705, and show how these results relate to the star-formation history and evolutionary state of these stellar systems.
An analysis of large-area CO J=3-2 maps from the James Clerk Maxwell Telescope for 12 nearby spiral galaxies reveals low velocity dispersions in the molecular component of the interstellar medium. The three lowest luminosity galaxies show a relatively flat velocity dispersion as a function of radius while the remaining nine galaxies show a central peak with a radial fall-off within 0.2-0.4 r(25). Correcting for the average contribution due to the internal velocitydispersions of a population of giant molecular clouds, the average cloud-cloud velocity dispersion across the galactic disks is 6.1 +/- 1.0 km/s (standard deviation 2.9 km/s), in reasonable agreement with previous measurements for the Galaxy andM33. The cloud-cloud velocity dispersion derived from the CO data is on average two times smaller than the HI velocity dispersion measured in the same galaxies. The low cloud-cloudvelocity dispersion implies that the molecular gas is the critical component determining the stability of the galactic disk against gravitational collapse, especially in those regions of the disk which are H2 dominated. The cloud-cloud velocity dispersion shows a significant positivecorrelation with both the far-infrared luminosity, which traces the star formation activity, and the K-band absolute magnitude, which traces the total stellar mass. For three galaxies in the Virgo cluster, smoothing the data to a resolution of 4.5 kpc (to match the typical resolution of high redshift CO observations) increases the measured velocity dispersion by roughly a factor of two, comparable to the dispersion measured recently in a normal galaxy at z=1. This comparison suggests that the mass and star formation rate surface densities may be similar in galaxies from z=0-1 and that the high star formation rates seen at z=1 may be partly due to the presence of physically larger molecular gas disks.
108 - Blakesley Burkhart 2021
Magnetohydrodynamic (MHD) turbulence is a crucial component of the current paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and evolution of structure in the interstellar medium (ISM) of galaxies. Despite the importance of turbulence to astrophysical fluids, a full theoretical framework based on solutions to the Navier-Stokes equations remains intractable. Observations provide only limited line-of-sight information on densities, temperatures, velocities and magnetic field strengths and therefore directly measuring turbulence in the ISM is challenging. A statistical approach has been of great utility in allowing comparisons of observations, simulations and analytic predictions. In this review article we address the growing importance of MHD turbulence in many fields of astrophysics and review statistical diagnostics for studying interstellar and interplanetary turbulence. In particular, we will review statistical diagnostics and machine learning algorithms that have been developed for observational data sets in order to obtain information about the turbulence cascade, fluid compressibility (sonic Mach number), and magnetization of fluid (Alfvenic Mach number). These techniques have often been tested on numerical simulations of MHD turbulence, which may include the creation of synthetic observations, and are often formulated on theoretical expectations for compressible magnetized turbulence. We stress the use of multiple techniques, as this can provide a more accurate indication of the turbulence parameters of interest. We conclude by describing several open-source tools for the astrophysical community to use when dealing with turbulence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا