Do you want to publish a course? Click here

VLT Kinematics for omega Centauri: Further Support for a Central Black Hole

455   0   0.0 ( 0 )
 Added by Karl Gebhardt
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Galactic globular cluster omega Centauri is a prime candidate for hosting an intermediate mass black hole. Recent measurements lead to contradictory conclusions on this issue. We use VLT-FLAMES to obtain new integrated spectra for the central region of omega Centauri. We combine these data with existing measurements of the radial velocity dispersion profile taking into account a new derived center from kinematics and two different centers from the literature. The data support previous measurements performed for a smaller field of view and show a discrepancy with the results from a large proper motion data set. We see a rise in the radial velocity dispersion in the central region to 22.8+-1.2 km/s, which provides a strong sign for a central black hole. Isotropic dynamical models for omega Centauri imply black hole masses ranging from 3.0 to 5.2x10^4 solar masses depending on the center. The best-fitted mass is 4.7+-1.0x10^4 solar masses.



rate research

Read More

Supermassive black holes (SMBHs) are fundamental keys to understand the formation and evolution of their host galaxies. However, the formation and growth of SMBHs are not yet well understood. One of the proposed formation scenarios is the growth of SMBHs from seed intermediate-mass black holes (IMBHs, 10^2 to 10^5 M_{odot}) formed in star clusters. In this context, and also with respect to the low mass end of the M-sigma relation for galaxies, globular clusters are in a mass range that make them ideal systems to look for IMBHs. Among Galactic star clusters, the massive cluster $omega$ Centauri is a special target due to its central high velocity dispersion and also its multiple stellar populations. We study the central structure and dynamics of the star cluster $omega$ Centauri to examine whether an IMBH is necessary to explain the observed velocity dispersion and surface brightness profiles. We perform direct N-body simulations to follow the dynamical evolution of $omega$ Centauri. The simulations are compared to the most recent data-sets in order to explain the present-day conditions of the cluster and to constrain the initial conditions leading to the observed profiles. We find that starting from isotropic spherical multi-mass King models and within our canonical assumptions, a model with a central IMBH mass of 2% of the cluster stellar mass, i.e. a 5x10^4 M_{odot} IMBH, provides a satisfactory fit to both the observed shallow cusp in surface brightness and the continuous rise towards the center of the radial velocity dispersion profile. In our isotropic spherical models, the predicted proper motion dispersion for the best-fit model is the same as the radial velocity dispersion one. (abridged)
96 - A. Bellini 2018
In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster $omega$ Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 half-light radii from the center of the cluster. Thanks to the over 15-year-long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as $sim 10 mu$as yr$^{-1}$, and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated to the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with $eta_{rm 1G}=-0.007pm0.026$ for the former, and $eta_{rm 2G}=0.074pm0.029$ for the latter, where $eta$ is defined so that the velocity dispersion $sigma_mu$ scales with stellar mass as $sigma_mu propto m^{-eta}$. The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in $omega$ Centauri and other globular clusters. We make our astro-photometric catalog publicly available.
175 - Joel C. Berrier 2013
We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M_BH of a disk galaxys nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log(M/M_sun) = (8.21 +/- 0.16) - (0.062 +/- 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy and has the advantage of being unambiguously measurable from imaging data alone.
225 - E. Carretta 2010
We derive homogeneous abundances of Fe, O, Na and alpha-elements from high resolution FLAMES spectra for 76 red giant stars in NGC 6715 (M 54) and for 25 red giants in the surrounding nucleus of the Sagittarius (Sgr) dwarf galaxy. Our main findings are that: (i) we confirm that M 54 shows intrinsic metallicity dispersion, ~0.19 dex r.m.s.; (ii) when the stars of the Sgr nucleus are included, the metallicity distribution strongly resembles that in omega Cen; the relative contribution of the most metal-rich stars is however different in these two objects; (iii) in both GCs there is a very extended Na-O anticorrelation, signature of different stellar generations born within the cluster, and (iv) the metal-poor and metal-rich components in M 54 (and omega Cen) show clearly distinct extension of the Na-O anticorrelation, the most heavily polluted stars being those of the metal-rich component. We propose a tentative scenario for cluster formation that could explain these features. Finally, similarities and differences found in the two most massive GCs in our Galaxy can be easily explained if they are similar objects (nuclear clusters in dwarf galaxies) observed at different stages of their dynamical evolution.
78 - G.C. Myeong 2018
We use the SDSS-Gaia catalogue to search for substructure in the stellar halo. The sample comprises 62,133 halo stars with full phase space coordinates and extends out to heliocentric distances of $sim 10$ kpc. As actions are conserved under slow changes of the potential, they permit identification of groups of stars with a common accretion history. We devise a method to identify halo substructures based on their clustering in action space, using metallicity as a secondary check. This is validated against smooth models and numerical constructed stellar halos from the Aquarius simulations. We identify 21 substructures in the SDSS-Gaia catalogue, including 7 high significance, high energy and retrograde ones. We investigate whether the retrograde substructures may be material stripped off the atypical globular cluster $omega$~Centauri. Using a simple model of the accretion of the progenitor of the $omega$~Centauri, we tentatively argue for the possible association of up to 5 of our new substructures (labelled Rg1, Rg3, Rg4, Rg6 and Rg7) with this event. This sets a minimum mass of $5 times 10^8 M_odot$ for the progenitor, so as to bring $omega$~Centauri to its current location in action -- energy space. Our proposal can be tested by high resolution spectroscopy of the candidates to look for the unusual abundance patterns possessed by $omega$~Centauri stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا