No Arabic abstract
We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M_BH of a disk galaxys nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log(M/M_sun) = (8.21 +/- 0.16) - (0.062 +/- 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy and has the advantage of being unambiguously measurable from imaging data alone.
In this paper we consider a scenario where the currently observed hypervelocity stars in our Galaxy have been ejected from the Galactic center as a result of dynamical interactions with an intermediate-mass black hole (IMBH) orbiting the central supermassive black hole (SMBH). By performing 3-body scattering experiments, we calculate the distribution of the ejected stars velocities given various parameters of the IMBH-SMBH binary: IMBH mass, semimajor axis and eccentricity. We also calculate the rates of change of the BH binary orbital elements due to those stellar ejections. One of our new findings is that the ejection rate depends (although mildly) on the rotation of the stellar nucleus (its total angular momentum). We also compare the ejection velocity distribution with that produced by the Hills mechanism (stellar binary disruption) and find that the latter produces faster stars on average. Also, the IMBH mechanism produces an ejection velocity distribution which is flattened towards the BH binary plane while the Hills mechanism produces a spherically symmetric one. The results of this paper will allow us in the future to model the ejection of stars by an evolving BH binary and compare both models with textit{Gaia} observations, for a wide variety of environments (galactic nuclei, globular clusters, the Large Magellanic Clouds, etc.).
We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at $-$409 and $-$562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100$-$4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAPs BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a twenty-six year period. The flux density of the brightest OH maser components has reduced by more than a factor of two between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution VLBI follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science program.
The near-IR emission in Type 1 AGNs is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can thus further sublimate the innermost dust, leading to an increase in the radius of the near-IR emitting region. Such changes in radius have been indirectly probed by the measurements of the changes in the time lag between the near-IR and UV/optical light variation. Here we report direct evidence for such a receding sublimation region through the near-IR interferometry of the brightest Type 1 AGN in NGC4151. The increase in radius follows a significant brightening of the central engine with a delay of at least a few years, which is thus the implied destruction timescale of the innermost dust distribution. Compiling historic flux variations and radius measurements, we also infer the reformation timescale for the inner dust distribution to be several years in this galactic nucleus. More specifically and quantitatively, we find that the radius at a given time seems to be correlated with a long-term average of the flux over the previous several (~6) years, instead of the instantaneous flux. Finally, we also report measurements of three more Type 1 AGNs newly observed with the Keck interferometer, as well as the second epoch measurements for three other AGNs.
Empirical correlations between the masses of supermassive black holes (SMBHs) and properties of their host galaxies are well-established. Among these is the correlation with the flat rotation velocity of each galaxy measured either at a large radius in its rotation curve or via a spatially-integrated emission line width. We propose here the use of the de-projected integrated CO emission line width as an alternative tracer of this rotation velocity, that has already been shown useful for the Tully-Fisher (luminosity-rotation velocity) relation. We investigate the correlation between CO line widths and SMBH masses for two samples of galaxies with dynamical SMBH mass measurements, with respectively spatially-resolved and unresolved CO observations. The tightest correlation is found using the resolved sample of 24 galaxies as $log (M_mathrm{BH}/mathrm{M_odot})=(7.5pm0.1)+(8.5pm0.9)[log(W_mathrm{50}/sin i ,mathrm{km,s}^{-1})-2.7]$, where $M_mathrm{BH}$ is the central SMBH mass, $W_{50}$ the full-width at half-maximum of a double-horned emission line profile, and $i$ the inclination of the CO disc. This relation has a total scatter of $0.6,$dex, comparable to those of other SMBH mass correlations, and dominated by the intrinsic scatter of $0.5,$dex. A tight correlation is also found between the de-projected CO line widths and the stellar velocity dispersions averaged within one effective radius. We apply our correlation to the COLD GASS sample to estimate the local SMBH mass function.
The stellar kinematics of the dwarf elliptical galaxy NGC 4486B have been measured in seeing sigma_* = .22 arcsec with the Canada-France-Hawaii Telescope. Lauer et al. 1996, ApJ, 471, L79 have shown that NGC 4486B is similar to M31 in having a double nucleus. We show that it also resembles M31 in its kinematics. The velocity dispersion gradient is very steep: sigma increases from 116 +- 6 km/s at r = 2 - 6 to 281 +- 11 km/s at the center. This is much higher than expected for an elliptical galaxy of absolute magnitude M_B = -16.8: NGC 4486B is far above the scatter in the Faber-Jackson correlation between sigma and bulge luminosity. Therefore the King core mass-to-light ratio, M/L_V = 20, is unusually high compared with normal values for old stellar populations. We construct dynamical models with isotropic velocity dispersions and show that they reproduce black hole (BH) masses derived by more detailed methods. We also fit axisymmetric, three-integral models. Isotropic models imply that NGC 4486B contains a central dark object, probably a BH, of mass M_BH = 6^{+3}_{-2} x 10^8 M_sun. However, anisotropic models fit the data without a BH if the ratio of radial to azimuthal dispersions is ~ 2 at 1. Therefore this is a less strong BH detection than the ones in M31, M32, and NGC 3115. A 6 x 10^8 M_sun BH is 9 % of the mass M_bulge in stars; even if M_BH is smaller than the isotropic value, M_BH/M_bulge is likely to be unusually large. Double nuclei are a puzzle because the dynamical friction timescales for self-gravitating star clusters in orbit around each other are short. Since both M31 and NGC 4486B contain central dark objects, our results support models in which the survival of double nuclei is connected with the presence of a BH (e. g., Tremaine 1995, AJ, 110, 628).