Do you want to publish a course? Click here

Optical probing of correlation driven liquid-to-insulator transition in 2D electron gas

174   0   0.0 ( 0 )
 Added by Vttorio Bellani Dr.
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the quantum Hall liquid and the metal-insulator transition in a high mobility two dimensional electron gas, by means of photoluminescence and magneto-transport. In the integer and fractional regime at nu > 1/3, analyzing the emission energy dispersion we probe the magneto-Coulomb screening and the hidden symmetry of the electron liquid. In the fractional regime above above nu =1/3 the system undergoes the metal-to-insulator transition, and in the insulating phase the dispersion becomes linear with evidence of an increased renormalized mass.



rate research

Read More

Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in exact density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.
Metal-to-insulator transitions (MIT) can be driven by a number of different mechanisms, each resulting in a different type of insulator -- Change in chemical potential can induce a transition from a metal to a band insulator; strong correlations can drive a metal into a Mott insulator with an energy gap; an Anderson transition, on the other hand, due to disorder leads to a localized insulator without a gap in the spectrum. Here we report the discovery of an alternative route for MIT driven by the creation of a network of narrow channels. Transport data on Pt substituted for Ti in TiSe$_2$ shows a dramatic increase of resistivity by five orders of magnitude for few % of Pt substitution, with a power-law dependence of the temperature-dependent resistivity $rho(T)$. Our scanning tunneling microscopy data show that Pt induces an irregular network of nanometer-thick domain walls (DWs) of charge density wave (CDW) order, which pull charge carriers out of the bulk and into the DWs. While the CDW domains are gapped, the charges confined to the narrow DWs interact strongly, with pseudogap-like suppression in the local density of states, even when they were weakly interacting in the bulk, and scatter at the DW network interconnects thereby generating the highly resistive state. Angle-resolved photoemission spectroscopy spectra exhibit pseudogap behavior corroborating the spatial coexistence of gapped domains and narrow domain walls with excess charge carriers.
Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-particle complexes are an electron-hole mass symmetry and the small energy gap of the quantum Hall insulator itself. Theoretical calculations of the trion energy spectrum in a quantizing magnetic field predict that, besides the ground state, trions feature a hierarchy of excited bound states. In agreement with the theoretical simulations, we observe new photoluminescence lines related to the excited trion states. A relatively small energy gap allows the binding of three-particle complexes with magnetoplasma oscillations and formation of plasmarons. The plasmaron properties are investigated experimentally.
We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature.
99 - Yin Shi , Long-Qing Chen 2018
Electric current has been experimentally demonstrated to be able to drive the insulator-to-metal transition (IMT) in VO$_2$. The main mechanisms involved are believed to be the Joule heating effect and the strong electron-correlation effect. These effects are often entangled with each other in experiments, which complicates the understanding of the essential nature of the observations. We formulate a phase-field model to investigate theoretically in mesoscale the pure correlation effect brought by the current on the IMT in VO$_2$, i.e., the isothermal process under the current. We find that a current with a large density ($sim 10^1$ nA/nm$^2$) induces a few-nanosecond ultrafast switch in VO$_2$, in agreement with the experiment. The temperature-current phase diagram is further calculated, which reveals that the current may induce the M2 phase at low temperatures. The current is also shown capable of driving domain walls to move. Our work may assist related experiments and provide guidance to the engineering of VO$_2$-based electric switching devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا