Do you want to publish a course? Click here

The QCD equation of state with dynamical quarks

138   0   0.0 ( 0 )
 Added by K. K. Szabo
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The present paper concludes our investigation on the QCD equation of state with 2+1 staggered flavors and one-link stout improvement. We extend our previous study [JHEP 0601:089 (2006)] by choosing even finer lattices. Lattices with $N_t=6,8$ and 10 are used, and the continuum limit is approached by checking the results at $N_t=12$. A Symanzik improved gauge and a stout-link improved staggered fermion action is utilized. We use physical quark masses, that is, for the lightest staggered pions and kaons we fix the $m_pi/f_K$ and $m_K/f_K$ ratios to their experimental values. The pressure, the interaction measure, the energy and entropy density and the speed of sound are presented as functions of the temperature in the range $100 ...1000 textmd{MeV}$. We give estimates for the pion mass dependence and for the contribution of the charm quark. We compare our data to the equation of state obtained by the hotQCD collaboration.



rate research

Read More

We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 16^3x32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain F_K/F_pi=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values.
We study the dynamics of SU(2) gauge theory with NF=6 Dirac fermions by means of lattice simulation to investigate if they are appropriate to realization of electroweak symmetry breaking. The discrete analogue of beta function for the running coupling constant defined under the Schroedinger functional boundary condition are computed on the lattices up to linear size of L/a=24 and preclude the existence of infrared fixed point below 7.6. Gluonic observables such as heavy quark potential, string tension, Polyakov loop suggest that the target system is in the confining phase even in the massless quark limit.
84 - C. Bernard , T. Burch , C. DeTar 2006
We report results for the interaction measure, pressure and energy density for nonzero temperature QCD with 2+1 flavors of improved staggered quarks. In our simulations we use a Symanzik improved gauge action and the Asqtad $O(a^2)$ improved staggered quark action for lattices with temporal extent $N_t=4$ and 6. The heavy quark mass $m_s$ is fixed at approximately the physical strange quark mass and the two degenerate light quarks have masses $m_{ud}approx0.1 m_s$ or $0.2 m_s$. The calculation of the thermodynamic observables employs the integral method where energy density and pressure are obtained by integration over the interaction measure.
We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results on ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular at small pion masses. We discuss the possible appearance of scattering states in various channels, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.
We study the phase structure of full QCD within the canonical ensemble with respect to triality in a lattice formulation. The procedure for the calculation of the effective potentials in this case is given. As an example we consider the three dimensional SU(2) gauge model at finite temperatures in the strong coupling region. The potential exhibits a deconfinement phase transition unlike the similar potential obtained in the grand canonical ensemble which demonstrates explicit Z(N) symmetry breaking at any temperature. Furthermore, we investigate the effective potential with the chiral condensate included. In contradiction to other authors, we find chiral symmetry restoration in all triality sectors. In the scheme with massless staggered fermions we observe chiral symmetry restoration accompanying a deconfinement phase transition of first order. Above the critical point, besides two Z(2) symmetric deconfining vacua there exists a metastable confining vacuum in a wide region of parameters. Such a picture could be interpreted as an indication on a mixed state of hadrons and quarks in the vicinity of the critical line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا