Do you want to publish a course? Click here

Hopf solitons in the Nicole model

577   0   0.0 ( 0 )
 Added by Paul Sutcliffe
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The Nicole model is a conformal field theory in three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to numerically construct soliton solutions for all Hopf charges from one to eight. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than two and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.



rate research

Read More

145 - Mike Gillard 2010
The Aratyn-Ferreira-Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Axial, knot and linked solitons are found numerically to be static solutions using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme-Faddeev (CSF) models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models permitting axial solitons than linked solitons at Hopf index four.
We perform full three-dimensional numerical relaxations of isospinning Hopf solitons with Hopf charge up to 8 in the Skyrme-Faddeev model with mass terms included. We explicitly allow the soliton solution to deform and to break the symmetries of the static configuration. It turns out that the model with its rich spectrum of soliton solutions, often of similar energy, allows for transmutations, formation of new solution types and the rearrangement of the spectrum of minimal-energy solitons in a given topological sector when isospin is added. We observe that the shape of isospinning Hopf solitons can differ qualitatively from that of the static solution. In particular the solution type of the lowest energy soliton can change. Our numerical results are of relevance for the quantization of the classical soliton solutions.
We compute the vacuum polarization energy of kink solitons in the $phi^{8}$ model in one space and one time dimensions. There are three possible field potentials that have eight powers of $phi$ and that possess kink solitons. For these different field potentials we investigate whether the vacuum polarization destabilizes thesolitons. This may particularly be the case for those potentials that have degenerate ground states with different curvatures in field space yielding different thresholds for the quantum fluctuations about the solitons at negative and positive spatial infinity. We find that destabilization occurs in some cases, but this is not purely a matter of the field potential but also depends on the realized soliton solution for that potential. One of the possible field potentials has solitons with different topological charges. In that case the classical mass approximately scales like the topological charge. Even though destabilization precludes robust statements, there are indications that the vacuum polarization energy does not scale as the topological charge.
146 - R. S. Ward 2018
Hopf solitons in the Skyrme-Faddeev system on $R^3$ typically have a complicated structure, in particular when the Hopf number Q is large. By contrast, if we work on a compact 3-manifold M, and the energy functional consists only of the Skyrme term (the strong-coupling limit), then the picture simplifies. There is a topological lower bound $Egeq Q$ on the energy, and the local minima of E can look simple even for large Q. The aim here is to describe and investigate some of these solutions, when M is $S^3$, $T^3$ or $S^2 times S^1$. In addition, we review the more elementary baby-Skyrme system, with M being $S^2$ or $T^2$.
We consider a supersymmetric Bogomolny-type model in 2+1 dimensions originating from twistor string theory. By a gauge fixing this model is reduced to a modified U(n) chiral model with N<=8 supersymmetries in 2+1 dimensions. After a Moyal-type deformation of the model, we employ the dressing method to explicitly construct multi-soliton configurations on noncommutative R^{2,1} and analyze some of their properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا