Do you want to publish a course? Click here

Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

165   0   0.0 ( 0 )
 Added by Sukbum Hong
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of a large, statistically complete sample of star-forming dwarf galaxies using mid-infrared observations from the {it Spitzer Space Telescope}. The relationships between metallicity, star formation rate (SFR) and mid-infrared color in these systems show that the galaxies span a wide range of properties. However, the galaxies do show a deficit of 8.0 um polycyclic aromatic hydrocarbon emission as is apparent from the median 8.0 um luminosity which is only 0.004 lstarf while the median $B$-band luminosity is 0.05 lstarb. Despite many of the galaxies being 8.0 um deficient, there is about a factor of 4 more extremely red galaxies in the [3.6] $-$ [8.0] color than for a sample of normal galaxies with similar optical colors. We show correlations between the [3.6] $-$ [8.0] color and luminosity, metallicity, and to a lesser extent SFRs that were not evident in the original, smaller sample studied previously. The luminosity--metallicity relation has a flatter slope for dwarf galaxies as has been indicated by previous work. We also show a relationship between the 8.0 um luminosity and the metallicity of the galaxy which is not expected given the competing effects (stellar mass, stellar population age, and the hardness of the radiation field) that influence the 8.0 um emission. This larger sample plus a well-defined selection function also allows us to compute the 8.0 um luminosity function and compare it with the one for the local galaxy population. Our results show that below 10$^{9}$ $L$solar, nearly all the 8.0 um luminosity density of the local universe arises from dwarf galaxies that exhibit strong ha emission -- i.e., 8.0 um and ha selection identify similar galaxy populations despite the deficit of 8.0 um emission observed in these dwarfs.



rate research

Read More

We present mid-infrared Spitzer Space Telescope observations of a complete sample of star-forming dwarf galaxies selected from the KPNO International Spectroscopic Survey. The galaxies span a wide range in mid-infrared properties. Contrary to expectations, some of the galaxies emit strongly at 8 micron indicating the presence of hot dust and/or PAHs. The ratio of this mid-infrared dust emission to the stellar emission is compared with the galaxies luminosity, star-formation rate, metallicity, and optical reddening. We find that the strength of the 8.0 micron dust emission to the stellar emission ratio is more strongly correlated with the star-formation rate than it is with the metallicity or the optical reddening in these systems. Nonetheless, there is a correlation between the 8.0 micron luminosity and metallicity. The slope of this luminosity-metallicity correlation is shallower than corresponding ones in the B-band and 3.6 micron. The precise nature of the 8.0 micron emission seen in these galaxies (i.e., PAH versus hot dust or some combination of the two) will require future study, including deep mid-IR spectroscopy.
We combine Planck HFI data at 857, 545, 353 & 217GHz with data from WISE, Spitzer, IRAS & Herschel to investigate the properties of a flux limited sample of local star-forming galaxies. A 545GHz flux density limit was chosen so that the sample is 80% complete at this frequency, giving a sample of 234 local galaxies. We investigate the dust emission and star formation properties of the sample via various models & calculate the local dust mass function. Although 1-component modified black bodies fit the dust emission longward of 80um very well (median beta=1.83) the degeneracy between dust temp & beta also means that the SEDs are very well described by a dust emissivity index fixed at beta=2 and 10<T<25 K. Although a second, warmer dust component is required to fit shorter wavelength data, & contributes ~1/3 of the total infrared emission, its mass is negligible. No evidence is found for a very cold (6-10 K) dust component. The temp of the cold dust component is strongly influenced by the ratio of the star formation rate to the total dust mass. This implies, contrary to what is often assumed, that a significant fraction of even the emission from ~20 K dust is powered by ongoing star formation, whether or not the dust itself is associated with star forming clouds or `cirrus. There is statistical evidence of a free-free contribution to the 217GHz flux densities of <20%. We find a median dust-to-stellar mass ratio of 0.0046; & that this ratio is anti-correlated with galaxy mass. There is good correlation between dust mass & atomic gas mass (median M_d/M_HI = 0.022), suggesting that galaxies that have more dust have more interstellar medium in general. Our derived dust mass function implies a mean dust mass density of the local Universe (for dust within galaxies), of 7.0+-1.4 x 10^5 M_solar/Mpc, significantly greater than that found in the most recent estimate using Herschel data.
175 - Nils Bergvall 2011
Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.
103 - Joshua D. Simon 2019
The 2020s are poised to continue the past two decades of significant advances based on observations of dwarf galaxies in the nearby universe. Upcoming wide-field photometric surveys will probe substantially deeper than previous data sets, pushing the discovery frontier for new dwarf galaxies to fainter magnitudes, lower surface brightnesses, and larger distances. These dwarfs will be compelling targets for testing models of galaxy formation and cosmology, including the properties of dark matter and possible modifications to gravity. However, most of the science that can be extracted from nearby dwarf galaxies relies on spectroscopy with large telescopes. We suggest that maximizing the scientific impact of near-future imaging surveys will require both major spectroscopic surveys on 6-10m telescopes and multiplexed spectroscopy with even larger apertures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا