Do you want to publish a course? Click here

Magnetic braking in ultracompact binaries

145   0   0.0 ( 0 )
 Added by Alison Farmer
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binarys component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which admits a cold white dwarf donor and requires that the accretor have surface field strength ~6E4 G. Such a field would not substantially disturb the accretion disk. Although the treatment in this paper is necessarily simplified, and many conditions must be met in order for a wind to operate as proposed, it is clear that magnetic braking cannot easily be ruled out as an important angular momentum sink. We finish by highlighting observational tests that in the next few years will allow an assessment of the importance of magnetic braking.



rate research

Read More

52 - K. X. Van , N. Ivanova 2019
The formation of low-mass X-ray binaries (LMXBs) is an ongoing challenge in stellar evolution. The important subset of LMXBs are the binary systems with a neutron star (NS) accretor. In NS LMXBs with non-degenerate donors, the mass transfer is mainly driven by magnetic braking. The discrepancies between the observed mass transfer (MT) rates and the theoretical models were known for a while. Theory predictions of the MT rates are too weak and differ by an order of magnitude or more. Recently, we showed that with the standard magnetic braking, it is not possible to find progenitor binary systems such that they could reproduce -- at any time of their evolution -- most of the observed persistent NS LMXBs. In this ${it Letter}$ we present a modified magnetic braking prescription, CARB (Convection And Rotation Boosted). CARB magnetic braking combines two recent improvements in understanding stellar magnetic fields and magnetized winds -- the dependence of the magnetic field strength on the outer convective zone and the dependence of the Alfv`en radius on the donors rotation. Using this new magnetic braking prescription, we can reproduce the observed mass transfer rates at the detected mass ratio and orbital period for all well-observed to-the-date Galactic persistent NS LMXBs. For the systems where the effective temperature of the donor stars is known, theory agrees with observations as well.
We consider the formation of low-mass X-ray binaries containing accreting neutron stars via the helium-star supernova channel. The predicted relative number of short-period transients provides a sensitive test of the input physics in this process. We investigate the effect of varying mean kick velocities, orbital angular momentum loss efficiencies, and common envelope ejection efficiencies on the subpopulation of short-period systems, both transient and persistent. Guided by the thermal-viscous disk instability model in irradiation-dominated disks, we posit that short-period transients have donors close to the end of core-hydrogen burning. We find that with increasing mean kick velocity the overall short-period fraction, s, grows, while the fraction, r, of systems with evolved donors among short-period systems drops. This effect, acting in opposite directions on these two fractions, allows us to constrain models of LMXB formation through comparison with observational estimates of s and r. Without fine tuning or extreme assumptions about evolutionary parameters, consistency between models and current observations is achieved for a regime of intermediate average kick magnitudes of about 100-200 km/s, provided that (i) orbital braking for systems with donor masses in the range 1-1.5 solar masses is weak, i.e., much less effective than a simple extrapolation of standard magnetic braking beyond 1.0 solar mass would suggest, and (ii) the efficiency of common envelope ejection is low.
Ultracompact accreting binary systems each consist of a stellar remnant accreting helium-enriched material from a compact donor star. Such binaries include two related sub-classes, AM CVn-type binaries and helium cataclysmic variables, in both of which the central star is a white dwarf. We present a spectroscopic and photometric study of six accreting binaries with orbital periods in the range of 40--70 min, including phase-resolved VLT spectroscopy and high-speed ULTRACAM photometry. Four of these are AM CVn systems and two are helium cataclysmic variables. For four of these binaries we are able to identify orbital periods (of which three are spectroscopic). SDSS J1505+0659 has an orbital period of 67.8 min, significantly longer than previously believed, and longer than any other known AM CVn binary. We identify a WISE infrared excess in SDSS J1505+0659 that we believe to be the first direct detection of an AM CVn donor star in a non-direct impacting binary. The mass ratio of SDSS J1505+0659 is consistent with a white dwarf donor. CRTS J1028-0819 has an orbital period of 52.1 min, the shortest period of any helium cataclysmic variable. MOA 2010-BLG-087 is co-aligned with a K-class star that dominates its spectrum. ASASSN-14ei and ASASSN-14mv both show a remarkable number of echo outbursts following superoutbursts (13 and 10 echo outbursts respectively). ASASSN-14ei shows an increased outburst rate over the years following its superoutburst, perhaps resulting from an increased accretion rate.
129 - K. Pavlovskii , N. Ivanova 2015
Sco X-1 is a low-mass X-ray binary (LMXB) that has one of the most precisely determined set of binary parameters such as the mass accretion rate, companions mass ratio and the orbital period. For this system, as well as for a large fraction of other well-studied LMXBs, the observationally-inferred mass accretion rate is known to strongly exceed the theoretically expected mass transfer rate. We suggest that this discrepancy can be solved by applying a modified magnetic braking prescription, which accounts for increased wind mass loss in evolved stars compared to main sequence stars. Using our mass transfer framework based on {tt MESA}, we explore a large range of binaries at the onset of the mass transfer. We identify the subset of binaries for which the mass transfer tracks cross the Sco X-1 values for the mass ratio and the orbital period. We confirm that no solution can be found for which the standard magnetic braking can provide the observed accretion rates, while wind-boosted magnetic braking can provide the observed accretion rates for many progenitor binaries that evolve to the observed orbital period and mass ratio.
We present a population study of low- and intermediate-mass X-ray binaries (LMXBs) with neutron star accretors, performed using the detailed 1D stellar evolution code MESA. We identify all plausible Roche-lobe overflowing binaries at the start of mass transfer, and compare our theoretical mass transfer tracks to the population of well-studied Milky Way LMXBs. The mass transferring evolution depends on the accepted magnetic braking (MB) law for angular momentum loss. The most common MB prescription (Skumanich MB) originated from observations of the time-dependence of rotational braking of Sun-type stars, where the angular momentum loss rate depends on the donor mass $M_d$, donor radius $R_d$, and rotation rate $Omega$, $dot{J} propto M_d R_d^{gamma} Omega^3$. The functional form of the Skumanich MB can be also obtained theoretically assuming a radial magnetic field, isotropic isothermal winds, and boosting of the magnetic field by rotation. Here we show that this simple form of the Skumanich MB law gives mass transfer rates an order of magnitude too weak to explain most observed persistent LMXBs. This failure suggests that the standard Skumanich MB law should not be employed to interpret Galactic, or extragalactic, LMXB populations, with either detailed stellar codes or rapid binary population synthesis codes. We investigate modifications for the MB law, and find that including a scaling of the magnetic field strength with the convective turnover time, and a scaling of MB with the wind mass loss rate, can reproduce persistent LMXBs, and does a better job at reproducing transient LMXBs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا