Do you want to publish a course? Click here

Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy

175   0   0.0 ( 0 )
 Added by G\\\"oran Pilbratt
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Herschel was launched on 14 May 2009, and is now an operational ESA space observatory offering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55-671 {mu}m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.



rate research

Read More

Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.
We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, Akari and Planck. Akari fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and 500 mu is summarized.
136 - B. Magnelli , D. Lutz , P. Santini 2012
We study a sample of 61 submillimetre galaxies (SMGs) selected from ground-based surveys, with known spectroscopic redshifts and observed with Herschel as part of the PACS Evolutionary Probe (PEP) and the Herschel Multi-tiered Extragalactic Survey (HerMES) key programmes. We use the broad far-infrared wavelength coverage (100-600um) provided by the combination of PACS and SPIRE observations. Using a power-law temperature distribution model to derive infrared luminosities and dust temperatures, we measure a dust emissivity spectral index for SMGs of beta=2.0+/-0.2. Our results unveil the diversity of the SMG population. Some SMGs exhibit extreme infrared luminosities of ~10^13 Lsun and relatively warm dust components, while others are fainter (~10^12 Lsun) and are biased towards cold dust temperatures. The extreme infrared luminosities of some SMGs (LIR>10^12.7 Lsun, 26/61 systems) imply SFRs of >500Msun yr^-1. Such high SFRs are difficult to reconcile with a secular mode of star formation, and may instead correspond to a merger-driven stage in the evolution of these galaxies. Another observational argument in favour of this scenario is the presence of dust temperatures warmer than that of SMGs of lower luminosities (~40K as opposed to ~25K), consistent with observations of local ULIRGs triggered by major mergers and with results from hydrodynamic simulations of major mergers combined with radiative transfer calculations. Luminous SMGs are also offset from normal star-forming galaxies in the stellar mass-SFR plane, suggesting that they are undergoing starburst events with short duty cycles, compatible with the major merger scenario. On the other hand, a significant fraction of the low infrared luminosity SMGs have cold dust temperatures, are located close to the main sequence of star formation, and thus might be evolving through a secular mode of star formation. [abridged]
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 micron to 1.6 mm, SOFIA operates above 99.8 % of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center DLR, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This article provides an overview of the observatory and its early performance.
333 - Tracy Webb 2013
We survey the present landscape in submillimetre astronomy for Canada and describe a plan for continued engagement in observational facilities to ~2020. Building on Canadas decadal Long Range Plan process, we emphasize that continued involvement in a large, single-dish facility is crucial given Canadas substantial investment in ALMA and numerous PI-led submillimetre experiments. In particular, we recommend: i) an extension of Canadian participation in the JCMT until at least the unique JCMT Legacy Survey program is able to realize the full scientific potential provided by the world-leading SCUBA-2 instrument; and ii) involvement of the entire Canadian community in CCAT, with a large enough share in the partnership for Canadian astronomers to participate at all levels of the facility. We further recommend continued participation in ALMA development, involvement in many focused PI-led submillimetre experiments, and partnership in SPICA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا