The Raman spectra of single crystals of NiFe2O4 were studied in various scattering configurations in close comparison with the corresponding spectra of Ni0.7Zn0.3Fe2O4 and Fe3O4. The number of experimentally observed Raman modes exceeds significantly that expected for a normal spinel structure and the polarization properties of most of the Raman lines provide evidence for a microscopic symmetry lower than that given by the Fd-3m space group. We argue that the experimental results can be explained by considering the short range 1:1 ordering of Ni2+ and Fe3+ at the B-sites of inverse spinel structure, most probably of tetragonal P4_122/P4_322 symmetry.
This paper presents the results of simulations of the magnetization field {it ac} response (at $2$ to $12$ GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M$_{1-n}$Zn$_{n}$Fe$_2$O$_4$ (where M stands for a divalent metal), and the parameters chosen were the following: (a) for $n=0$: M = { Fe, Mn, Co, Ni, Mg, Cu }; (b) for $n=0.1$: M = { Fe, Mg } (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = { Mg, Cu } ferrites. A comparison of the $n=0$ and $n=0.1$ cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M = Fe case. An additional larger scale simulation of a $3$ by $3$ particle array was performed using similar conditions of the Fe$_3$O$_4$ (magnetite; $n=0$, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe$_3$O$_4$ one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.
To obtain comprehensive performance, heavy elements were added into superalloys for solid solution hardening. In this article, it is found by scanning transmission electron microscope observation that rather than distribute randomly heavy-atom columns prefer to align along <100> and <110> direction and form a short-range ordering with the heavy-element stripes 1-2 nm in length. Due to the strong bonding strength between the refractory elements and Ni atoms, this short-range ordering will be beneficial to the mechanical performances.
In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.
We report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite $mathrm{MgAl_{0.5}Fe_{1.5}O_4}$ (MAFO), which has a substantial in-plane four-fold magnetic anisotropy. We observe spin diffusion lengths $> 0.8$ $mathrm{mu m}$ at room temperature in 6 nm films, with spin diffusion length 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results.
Group IV alloys have been long viewed as homogeneous random solid solutions since they were first perceived as Si-compatible, direct-band-gap semiconductors 30 years ago. Such a perception underlies the understanding, interpretation and prediction of alloys properties. However, as the race to create scalable and tunable device materials enters a composition domain far beyond alloys equilibrium solubility, a fundamental question emerges as to how random these alloys truly are. Here we show, by combining statistical sampling and large-scale ab initio calculations, that GeSn alloy, a promising group IV alloy for mid-infrared technology, exhibits a clear, short-range order for solute atoms within its entire composition range. Such short-range order is further found to substantially affect the electronic properties of GeSn. We demonstrate the proper inclusion of this short-range order through canonical sampling can lead to a significant improvement over previous predictions on alloys band gaps, by showing an excellent agreement with experiments within the entire studied composition range. Our finding thus not only calls for an important revision of current structural model for group IV alloy, but also suggests short-range order may generically exist in different types of alloys.